Menu

Blog

Archive for the ‘computing’ category: Page 816

Sep 20, 2015

Beautiful Engineering

Posted by in categories: computing, engineering

1 Bit = Binary Digit.

8 Bits = 1 Byte.

1024 Bytes = 1 Kilobyte.

Continue reading “Beautiful Engineering” »

Sep 20, 2015

3D Microchip Allows Information to Travel in Three Dimensions

Posted by in category: computing

Researchers at the University of Cambridge have created a new type of microchip that allows information to move in three dimensions, left to right, back to front and up and down.

Scientists from the University of Cambridge have created, for the first time, a new type of microchip which allows information to travel in three dimensions. Currently, microchips can only pass digital information in a very limited way – from either left to right or front to back. The research was published today, 31 January, in Nature.

Dr Reinoud Lavrijsen, an author on the paper from the University of Cambridge, said: “Today’s chips are like bungalows – everything happens on the same floor. We’ve created the stairways allowing information to pass between floors.”

Read more

Sep 20, 2015

A new type of transistor that can be switched with magnetism rather than electricity could massively cut power consumption of computers

Posted by in categories: computing, mobile phones

, cell phones and other electronic devices and allow chips to be reprogrammed, reducing the volume of circuitry required inside them.

http://www.nature.com/news/magnetic-logic-makes-for-mutable-chips-1.12321

Read more

Sep 20, 2015

Microsoft demos English-to-Chinese universal translator that keeps your voice and accent Alternative World News Network At an event in China

Posted by in categories: computing, robotics/AI

Microsoft demos English-to-Chinese universal translator that keeps your voice and accent.

Alternative World News Network.

At an event in China, Microsoft Research chief Rick Rashid has demonstrated a real-time English-to-Mandarin speech-to-speech translation engine. Not only is the translation very accurate, but the software also preserves the user’s accent and intonation. We’re not just talking about a digitized, robotic translator here — this is firmly within the realms of Doctor Who or Star Trek universal translation.

Continue reading “Microsoft demos English-to-Chinese universal translator that keeps your voice and accent Alternative World News Network At an event in China” »

Sep 19, 2015

Sony Explains PlayStation VR Rebranding

Posted by in categories: computing, entertainment, virtual reality

VRFocus reports on Sony Computer Entertainment (SCE) explaining the rebranding of its Project Morpheus VR HMD to PlayStation VR.

Read more

Sep 19, 2015

Google’s John Giannandrea: How to Make Computers More Human

Posted by in categories: computing, robotics/AI

For starters, teach them to learn.

Read more

Sep 18, 2015

Satya Nadella: Once you use HoloLens, there’s no going back

Posted by in categories: augmented reality, computing

Speaking at Salesforce’s Dreamforce 2015 conference, Microsoft CEO Satya Nadella shared updates on the company’s HoloLens holographic headset-based computing technology.

Read more

Sep 17, 2015

Single photon decision-maker solves multi-armed bandit problem

Posted by in categories: computing, information science, particle physics, quantum physics

https://en.wikipedia.org/wiki/Multi-armed_bandit

In probability theory, the multi-armed bandit problem (sometimes called the K- or N-armed bandit problem) is a problem in which a gambler at a row of slot machines (sometimes known as “one-armed bandits”) has to decide which machines to play, how many times to play each machine and in which order to play them. When played, each machine provides a random reward from a distribution specific to that machine. The objective of the gambler is to maximize the sum of rewards earned through a sequence of lever pulls.


(Phys.org)—A combined team of researchers from France and Japan has created a decision-making device that is based on basic properties of quantum mechanics. In their paper published in Scientific Reports (and uploaded to the arXiv preprint server), the team describes the idea behind their device and how it works.

Continue reading “Single photon decision-maker solves multi-armed bandit problem” »

Sep 17, 2015

System can convert MRI heart scans into 3D-printed, physical models in a few hours

Posted by in categories: 3D printing, biotech/medical, computing, engineering

Researchers at MIT and Boston Children’s Hospital have developed a system that can take MRI scans of a patient’s heart and, in a matter of hours, convert them into a tangible, physical model that surgeons can use to plan surgery.

The models could provide a more intuitive way for surgeons to assess and prepare for the anatomical idiosyncrasies of individual patients. “Our collaborators are convinced that this will make a difference,” says Polina Golland, a professor of and computer science at MIT, who led the project. “The phrase I heard is that ‘surgeons see with their hands,’ that the perception is in the touch.”

This fall, seven cardiac surgeons at Boston Children’s Hospital will participate in a study intended to evaluate the models’ usefulness.

Read more

Sep 16, 2015

MIT creates diode for light, makes photonic silicon chips possible

Posted by in categories: computing, electronics, mobile phones, transportation

Light-emitting diodes (LEDs) are a cornerstone of consumer tech. They make thin-and-light TVs and smartphones possible, provide efficient household, handheld, and automobile illumination, and, of course, without LEDs your router would not have blinkenlights. Thanks to some engineers from MIT, though, a new diode looks set to steal the humble LED’s thunder. Dubbed a diode for light, and crafted using standard silicon chip fabrication techniques, this is a key discovery that will pave the path to photonic (as opposed to electronic) pathways on computer chips and circuit boards.

In electronics, a diode is a gate that only allows electrons to pass in one direction (and with an LED, it also emits light at the same time). In this case, the diode for light — which is made from a thin layer of garnet — is transparent in one direction, but opaque in the other. Garnet is usually hard to deposit on a silicon wafer, but the MIT researchers found a way to do it — and that’s really the meat of this discovery.

Diode for light diagramBasically, it’s now possible, with regular chip-fab tools, to create an integrated silicon circuit with optical, rather than electronic, interconnects — both internally, and between other chips. Photons, moving through the kind of transparent metamaterials that would be required to make such a circuit, move a lot faster than electrons. Furthermore, optical channels, through wavelength-division multiplexing, can carry a lot more data than electric signals. At the moment, hundreds of copper wires connect the CPU, northbridge, and memory — with on-chip photonic controllers, a motherboard might only have 10 or 20 channels.

Read more