Menu

Blog

Archive for the ‘computing’ category: Page 776

Mar 13, 2016

The Computer Chronicles

Posted by in categories: computing, entertainment, virtual reality

Special thanks to archive.org for hosting these episodes. Downloads of all these episodes and more can be found at: http://archive.org/details/computerchronicles

Read more

Mar 13, 2016

Video: What early email looked like

Posted by in categories: computing, internet, mobile phones

It can be easy to take things like modern email for granted, and nothing highlights that more than this clip from the “Database,” an old tech show that aired in the 80s.

In the segment above, you can see what sending and receiving an email was like in 1984, back when you were greeted with prompts like “phone computer” and literally had to dial in using a rotary phone. These were the days when webpages were numbered and email was such a luxury that people would excitedly sign off on messages with phrases like “electronically yours.”

Continue reading “Video: What early email looked like” »

Mar 13, 2016

Ray Kurzweil: Computers Will Not Rob Us of Our Humanity. They Will Make Us More Profoundly Human

Posted by in categories: computing, Ray Kurzweil

The futurist sat down with Neil deGrasse Tyson to discuss what it means to think and create in a near-future where knowledge and expertise are downloadable.

Read more

Mar 13, 2016

Kuiper Belt Objects Point The Way To Planet 9

Posted by in categories: computing, mathematics, space

On January 20th, 2016, researchers Konstantin Batygin and Michael E. Brown of Caltech announced that they had found evidence that hinted at the existence of a massive planet at the edge of the Solar System. Based on mathematical modeling and computer simulations, they predicted that this planet would be a super-Earth, two to four times Earth’s size and 10 times as massive. They also estimated that, given its distance and highly elliptical orbit, it would take 10,000 – 20,000 years to orbit the Sun.

Since that time, many researchers have responded with their own studies about the possible existence of this mysterious “Planet 9”. One of the latest comes from the University of Arizona, where a research team from the Lunar and Planetary Laboratory have indicated that the extreme eccentricity of distant Kuiper Belt Objects (KBOs) might indicate that they crossed paths with a massive planet in the past.

Read more

Mar 12, 2016

Craig Venter: Future Pathways for Synthetic Genomics

Posted by in categories: bioengineering, biological, chemistry, computing

Life’s chemistry, it appears, is quite kludgy. Such computer metaphors help explain Dr. Venter’s perspective on synthetic biology. Is a genomic version of Moore’s Law in the offing?

Read more

Mar 12, 2016

Evolution of Video Game Graphics 1952 — 2015

Posted by in categories: computing, entertainment, military, robotics/AI, space

This is all the best games from every year 1952–2015.
Here is the list:

1952: Nimrod Computer Game
1958: Tennis For Two
1971: Computer Space
1972: Pong
1973: Space Race
1974: Clean Sweep
1975: Anti-Ai
1976: Blockade
1977: Indy 500
1978: Sea Wolf 2
1979: Crash
1980: Pac-Man
1981: Ms. Pacman
1982: Paratrooper
1983: Super Gridder
1983: Hunchback
1984: Sokoban
1985: Super Mario Bros
1986: Outrun
1987: Leisure Suit Larry in the Land of the Lounge Lizards.
1988: Super Mario Bros 3
1989: Xenon 2
1990: Prince Of Persia
1991: Prehistorik
1992: Wolfenstein 3D
1993: Day of the Tentacle
1994: The Lion King
1995: Command & Conquer
1996: Tomb Raider
1997: Gta
1998: Half Life
1999: Quake 3
2000: Max Payne
2001: Gta 3
2002: Serious Sam: The First Encounter
2003: Medal Of Honor Allied Assault
2004: Half Life 2
2005: World Of Warcraft
2006: Need For Speed Most Wanted
2007: Crysis
2008: Assassin’s Creed
2009: Call Of Duty Modern Warfare 2
2010: Red Dead Redemption
2011: World Of Tanks
2012: Battlefield 3
2013: Gta 5
2014: Wolfenstein The New Order
2015: Tom Clancy’s The Division

Read more

Mar 11, 2016

Microsoft spending a fortune on Quantum computing

Posted by in categories: computing, quantum physics

Peter Lee, the corporate vice president of Microsoft Research said that Quantum computing is “stupendously exciting right now.”

Apparently it is Microsoft Research’s largest area of investment and Lee is pretty certain it is on the verge of some major scientific achievements.

Read more

Mar 11, 2016

Can we build quantum-resistant encryption?

Posted by in categories: computing, encryption, engineering, finance, government, internet, quantum physics

I do believe we’re within a 7 to 8 yr window at this point with Quantum hitting the broader main stream computing infrastructure. However, we have banks in Europe that have been using the technology for network communications, Los Alamos Labs experimenting since late 2011 with Quantum Internet, now China is launching their own Quantum Satellite for wireless communications; so I do suggest a strategy needs to be developed over the next 2 to 3 yrs for government & industry around how to manage & plan for deployment of Quantum especially with China & Russia’s interest.


New research demonstrating that quantum computing is now just an engineering challenge moves the possibility of encryption-cracking machines to the front burner.

Read more

Mar 11, 2016

Chinese scientists realize quantum simulation of the Unruh effect

Posted by in categories: computing, cosmology, electronics, particle physics, quantum physics

Quantum mechanics and relativity theory are two pillars of modern physics. With their amalgamation, many novel phenomena have been identified. For example, the Unruh effect [1] is one of the most significant outcomes of the quantum field theory. This effect serves as an important tool to investigate phenomena such as thermal emission of particles from black holes and cosmological horizons [2]. It has been 40 years since the discovery of the Unruh effect, however, this effect is too weak to be observed with current technique. There have been a lot of attempts in searching for the observational evidence of the Unruh effect and in general the experimental observation is still of great challenge. To address this issue, quantum simulators [3, 4] may provide a promising approach. Quantum simulation is widely applied for simulating the quantum systems which cannot be efficiently simulated by classical computers or are not directly tractable by the current techniques in the laboratory.

The researchers, led by Prof. Jiangfeng Du from University of Science and Technology of China, reported an experimental simulation of the Unruh effect with an NMR quantum simulator [5]. The experiments were performed on a Bruker Avance III 400MHz spectrometer. The researchers used a sample of 13C, 1H and 19F nuclear spins in chloroform as the NMR quantum simulator, as shown in Figure 1(a). The simulated Unruh effect on the quantum states can be realized by the pulse sequence acting on the sample, as depicted in Figure 1(b). By the quantum simulator, they experimentally demonstrated the behavior of Unruh temperature with acceleration, which agrees nicely with the theoretical prediction, as shown in Figure 2. Furthermore, they investigated the quantum correlations quantified by quantum discord between two fermionic modes as seen by two relatively accelerated observers. It is shown for the first time that the quantum correlations can be created by the Unruh effect from the classically correlated states. This work was recently published in the Science China-Physics, Mechanics & Astronomy.

It is interesting that the Unruh effect was in Feynman’s blackboard as one of the issues to learn at the time of his death in 1988, while it was also Feynman who conceived the idea of quantum simulation in 1982. This quantum simulation of the Unruh effect will provide a promising window to explore the quantum physics of accelerated systems, which widely appear in black hole physics, cosmology and particle physics.

Continue reading “Chinese scientists realize quantum simulation of the Unruh effect” »

Mar 11, 2016

Will the End of Moore’s Law Halt Computing’s Exponential Rise?

Posted by in categories: computing, Ray Kurzweil, singularity

“A common challenge to the ideas presented in this book is that these exponential trends must reach a limit, as exponential trends commonly do.” –Ray Kurzweil, The Singularity Is Near

Much of the future we envision today depends on the exponential progress of information technology, most popularly illustrated by Moore’s Law. Thanks to shrinking processors, computers have gone from plodding, room-sized monoliths to the quick devices in our pockets or on our wrists. Looking back, this accelerating progress is hard to miss—it’s been amazingly consistent for over five decades.

But how long will it continue?

Continue reading “Will the End of Moore’s Law Halt Computing’s Exponential Rise?” »