Toggle light / dark theme

Transhumanism discussion of using implants in children is in The Sun today, one of UK’s largest sites/papers.


A DOCTOR known as a “human cyborg” has revealed parents are bombarding him with requests to implant chips into their children.

Dr Patrick Kramer, who work under the job title of “chief cyborg officer”, receives harrowing messages from parents desperate for him to implant tracking chips under their children’s skin.

Read more

Now, some of the world’s largest tech companies are taking a cue from biology as they respond to these growing demands. They are rethinking the very nature of computers and are building machines that look more like the human brain, where a central brain stem oversees the nervous system and offloads particular tasks — like hearing and seeing — to the surrounding cortex.


New technologies are testing the limits of computer semiconductors. To deal with that, researchers have gone looking for ideas from nature.

Read more

Brain-controlled computers are currently helping paralyzed patients, but one day they might be used to control everything around you.

The ability to control the world around you with only your mind has been a feature of some of the best science fiction stories ever written, but even today the idea sounds pretty futuristic. Still, neuroscientists around the world are hard at work trying to figure out how to make a digital interface for the brain and in recent years have made remarkable strides toward this goal. Although this technology is still in its infancy, it’s not quite as hard to imagine abandoning touch screens for mind control anymore.

For the most part, brain-computer interfaces (BCIs) are currently being created only for people who have suffered debilitating injuries that left them partially or completely paralyzed.

Read more

Physicists from the University of Basel have developed a memory that can store photons. These quantum particles travel at the speed of light and are thus suitable for high-speed data transfer. The researchers were able to store them in an atomic vapor and read them out again later without altering their quantum mechanical properties too much. This memory technology is simple and fast and it could find application in a future quantum Internet. The journal Physical Review Letters has published the results.

Even today, fast in telecommunication networks employs short light pulses. Ultra broadband technology uses optical fiber links through which information can be transferred at the speed of light. At the receiver’s end, the transmitted information has to be stored quickly and without errors so that it can be processed further electronically on computers. To avoid transmission errors, each bit of information is encoded in relatively strong light pulses that each contain at least several hundreds of photons.

For several years, researchers all over the world have been working on operating such networks with single photons. Encoding one bit per is not only very efficient, but it also allows for a radically new form of information processing based on the laws of physics. These laws allow a single photon to encode not only the states 0 or 1 of a classic bit, but also to encode a superposition of both states at the same time. Such quantum bits are the basis for that could make unconditionally secure communication and super fast quantum computers possible in the future. The ability to store and retrieve single photons from a quantum memory is a key element for these technologies, which is intensively investigated.

Read more

Research and development is focused on developing new means of data storage that are more dense and so can store greater amounts of data, and do so in a more energy efficient way. Sometimes this involves updating established techniques: recently IBM announced a new magnetic tape technology that can store 25 gigabytes per square inch, a new world record for the 60-year-old technology. While current magnetic or solid-state consumer hard drives are more dense at around 200 gigabytes per square inch, magnetic tapes are still frequently used for data back-up.

However, the cutting edge of data storage research is working at the level of individual atoms and molecules, representing the ultimate limit of technological miniaturization.

Read more

Quantum computers based on the twisting pathways of moving particles have so far lived only in theory – the particles they would rely on might not even exist.

But with the exciting discovery of electrons ‘swirling’ down a wire, the hunt is over for exactly the particles such quantum devices have been waiting for. Now the work of turning these theoretical computers into reality could soon be underway.

Researchers from the University of Sydney and Microsoft have observed electrons forming a kind of matter called a quasiparticle under conditions that saw them behave as theoretical objects called Majorana fermions.

Read more

Australian researchers have designed a new type of qubit — the building block of quantum computers — that they say will finally make it possible to manufacture a true, large-scale quantum computer. Broadly speaking, there are currently a number of ways to make a quantum computer. Some take up less space, but tend to be incredibly complex. Others are simpler, but if you want it to scale up you’re going to need to knock down a few walls.

Read more