Toggle light / dark theme

So yes, Microsoft may (at long last) be redesigning Windows 10 updates in a more responsible manner. But allowing users to block dangerous updates is just one part of the solution. Not sending dangerous updates to users computers every few months seems equally important to me.

___

Follow Gordon on Twitter and Facebook.

Read more

On April 25, a SpaceX Falcon 9 rocket will launch cargo to the space station and two organs-on-a-chip experiments designed by University of Pennsylvania scientists. They want to understand why so many astronauts get infections while in space. NASA has reported that 15 of the 29 Apollo astronauts had bacterial or viral infections. Between 1989 and 1999, more than 26 space shuttle astronauts had infections.

Huh and his team have created two separate experiments for this first launch. The first essentially mimics an infection inside a human airway, to see what happens to the bacteria, and the surrounding cells, in orbit. Huh’s BIOLines lab created the actual chips.

A lung chip is made of a polymer, and a permeable membrane is the platform for the human cells. For the lung-on-a-chip, one side of the membrane is coated with lung cells, to process the air, and capillary cells on the other, to provide the blood flow. The membrane is stretched and released to provide the bellows-like effect of real lungs.

Read more

A world-record result in reducing errors in semiconductor ‘spin qubits’, a type of building block for quantum computers, has been achieved using the theoretical work of quantum physicists at the University of Sydney Nano Institute and School of Physics.

The experimental result by University of New South Wales engineers demonstrated error rates as low as 0.043 percent, lower than any other spin qubit. The joint research paper by the Sydney and UNSW teams was published this week in Nature Electronics and is the journal’s cover story for April.

“Reducing errors in quantum computers is needed before they can be scaled up into useful machines,” said Professor Stephen Bartlett, a corresponding author of the paper.

Read more

Electronic devices such as transistors are getting smaller and will soon hit the limits of conventional performance based on electrical currents.

Devices based on magnonic currents—quasi-particles associated with waves of magnetization, or , in certain —would transform the industry, though scientists need to better understand how to control them.

Engineers at the University of California, Riverside, have made an important step toward the development of practical magnonic devices by studying, for the first time, the level of noise associated with propagation of magnon current.

Read more

ETH researchers have integrated two CRISPR-Cas9-based core processors into human cells. This represents a huge step towards creating powerful biocomputers.

Controlling through gene switches based on a model borrowed from the digital world has long been one of the primary objectives of synthetic biology. The digital technique uses what are known as logic gates to process , creating circuits where, for example, output signal C is produced only when input signals A and B are simultaneously present.

To date, biotechnologists had attempted to build such digital circuits with the help of protein gene switches in . However, these had some serious disadvantages: they were not very flexible, could accept only simple programming, and were capable of processing just one input at a time, such as a specific metabolic molecule. More complex computational processes in cells are thus possible only under certain conditions, are unreliable, and frequently fail.

Read more

Researchers hoping to better interpret data from the detection of gravitational waves generated by the collision of binary black holes are turning to the public for help.

West Virginia University assistant professor Zachariah Etienne is leading what will soon become a global volunteer computing effort. The public will be invited to lend their own computers to help the unlock the secrets contained in observed when smash together.

LIGO’s first detection of gravitational waves from colliding black holes in 2015 opened a new window on the universe, enabling scientists to observe cosmic events spanning billions of years and to better understand the makeup of the Universe. For many scientists, the discovery also fueled expansion of efforts to more thoroughly test the theories that help explain how the universe works—with a particular focus on inferring as much information as possible about the black holes prior to their .

Read more