Toggle light / dark theme

Tiny Magnets, Big Potential: How Spin Waves Let Particles “Talk” in 2D Materials

Physicists have discovered that electronic excitations in 2D magnets can interact through spin waves – ripples in a material’s magnetic structure.

This breakthrough allows excitons (electron-hole pairs) to influence one another indirectly, like objects disturbing water. The interaction, demonstrated in a magnetic semiconductor called CrSBr, can be toggled on and off with magnetic fields, opening doors to revolutionary technologies like optical modulators, logic gates, and especially quantum transducers for future quantum computers and communication systems.

Discovery Unlocks Spin-Wave Mediated Interactions.

Researchers discover a new type of quantum entanglement

A study from Technion unveils a newly discovered form of quantum entanglement in the total angular momentum of photons confined in nanoscale structures. This discovery could play a key role in the future miniaturization of quantum communication and computing components.

Quantum physics sometimes leads to very unconventional predictions. This is what happened when Albert Einstein and his colleagues, Boris Podolsky and Nathan Rosen (who later founded the Faculty of Physics at Technion), found a scenario in which knowing the state of one particle immediately affects the state of the other particle, no matter how great the distance between them. Their historic 1935 paper was nicknamed EPR after its three authors (Einstein–Podolsky–Rosen).

The idea that knowing the state of one particle will affect another particle located at a huge distance from it, without physical interaction and information transfer, seemed absurd to Einstein, who called it “spooky action at a distance.”

Understanding disrupted motivation in Parkinson’s disease through a value-based decision-making lens

Neurobehavioural disturbances such as loss of motivation have profound effects on the lives of many people living with Parkinson’s disease (PD), as well as other brain disorders. The field of decision-making neuroscience, underpinned by a plethora of work across species, provides an important framework within which to investigate apathy in clinical populations. Here we review how changes in a number of different processes underlying value-based decision making may lead to the common phenotype of apathy in PD. The application of computational models to probe both behaviour and neurophysiology show promise in elucidating these cognitive processes crucial for motivated behaviour. However, observations from the clinical management of PD demand an expanded view of this relationship, which we aim to delineate. Ultimately, effective treatment of apathy may depend on identifying the pattern in which decision making and related mechanisms have been disrupted in individuals living with PD.

Physicists put Schrödinger’s cat in a microwave — and the quantum experiment actually worked

Physicists have replicated the famous Schrödinger’s cat experiment at hotter temperatures than ever before. The breakthrough is a small but significant step toward quantum computers that can work at normal temperatures.

Space Forge sees LEO as key to strengthening US chip independence

TAMPA, Fla. — British in-orbit manufacturing venture Space Forge has appointed technology veteran Atul Kumar to set up a semiconductor business in the United States, aiming to bolster domestic chip production as efforts to reduce reliance on foreign suppliers gather pace.

Kumar, a materials scientist with more than two decades of experience in the sector, is tasked with developing manufacturing operations under Space Forge’s U.S. subsidiary to support the terrestrial and in-space growth of semiconductor substrates, the company announced April 10.

The move comes as the U.S. ramps up efforts to reduce its dependence on chips from abroad, driven by supply chain disruptions, national security concerns and mounting trade tensions — particularly with China.

Simulating quantum magnetism with a digital quantum computer

Quantum computers, which process information leveraging quantum mechanical effects, have the potential to outperform classical computers in some optimization and computational tasks. In addition, they could be used to simulate complex quantum systems that cannot be simulated using classical computers.

Researchers at Quantinuum and other institutes in Europe and the United States recently set out to simulate the digitized dynamics of the quantum Ising model, a framework that describes in materials, using an advanced quantum computer.

Their simulations, outlined in a paper on the arXiv preprint server, led to the observation of a transient state known as Floquet prethermalization, in which systems appear locally stable before approaching full equilibrium, in regimes that are inaccessible to classical computers.

Strategic gene placement in bacteria offers insights into evolutionary success

Bioinformaticians from Heinrich Heine University Düsseldorf (HHU) and the university in Linköping (Sweden) have established that the genes in bacterial genomes are arranged in a meaningful order. In the journal Science, they explain that the genes are arranged by function: If they become increasingly important for faster growth, they are located near the origin of DNA replication. Accordingly, their position influences how their activity changes with the growth rate.

Are genes distributed randomly along the , as if scattered from a salt shaker? This opinion, which is held by a majority of researchers, has now been disputed by a team of bioinformaticians led by Professor Dr. Martin Lercher, head of the research group for Computational Cell Biology at HHU.

When bacteria replicate their in preparation for , the process starts at a specific point on the bacterial chromosome and continues along the chromosome in both directions.

Physicists create hottest Schrödinger’s cat ever in quantum technology breakthrough

In a new experiment, physicists have replicated the famous Schrödinger’s cat experiment at hotter temperatures than ever before. The breakthrough is a small but significant step toward quantum computers that can work at normal temperatures.