Toggle light / dark theme

Year 2014 face_with_colon_three If black holes have infinitely small sizes and infinitely density this also means that string theory would also solve the infinitely small problem because now we know that infinitely small sizes exist and if that exists then so does infinite energy from super string essentially filling out the rest of the mystery of the God equation. This means that computers could be infinitely small aswell saving a ton of space aswell.


If you’ve wondered how big is a black hole? then you’ve come to the right place! Learn about the sizes of black holes and the multi-layered answer.

Published in the journal Quantum Science and Technology, Saleh’s research focused on a novel quantum computing technique that should — at least on paper — be able to reconstitute a small object across space “without any particles crossing.”

While it’s an exciting prospect, realizing his vision will require a lot more time and effort — not to mention next-generation quantum computers that haven’t been designed, let alone built yet. That is if it’s even possible at all.

Counterportation can be achieved, the study suggests, by the construction of a small “local wormhole” in a lab — and as the press release notes, plans are already underway to actually build the groundbreaking technology described in the paper.

Driving Toward the Elimination of Cancer — Joel Greshock — VP, Oncology, Data Science & Digital Health, Janssen Pharmaceutical Companies of Johnson & Johnson.


Joel Greshock is VP, Oncology, Data Science & Digital Health, Janssen Research & Development (https://www.janssen.com/oncology/leadership-team). In this position, he is responsible for creating unique and actionable medical insights using large and increasingly available datasets. The focus of this research includes discovering novel therapeutic targets, identifying areas of unmet medical need, and enhancing clinical trial recruitment and execution.

Prior to joining Janssen R&D, Joel served as Vice President of Bioinformatics at Neon Therapeutics, Inc., where he built and managed the Data Sciences organization. At Neon, he was responsible for the design and deployment of personalized cancer therapies now under clinical evaluation.

Prior to joining Neon, Joel served as Head of Oncology Translational Informatics for Novartis, where he was responsible for the correlation of patient outcomes with molecular biomarkers, identification of mechanisms of clinical resistance and computational research for assets approaching or being evaluated in early phases of development.

Before joining Novartis, Joel assumed numerous roles for GlaxoSmithKline Oncology, which included Head of Bioinformatics. Earlier in his career, Joel was a Data Analyst at Abramson Family Cancer Research Institute at the University of Pennsylvania, where he built early generation microarray platforms and developed widely used predictive models for cancer predisposition mutations.

This post is also available in: he עברית (Hebrew)

According to a report done by Surfshark VPN, out of the approximately 5 billion of internet users, over 1.6 billion of them (31% of users) use a VPN. That’s close to a fifth of the worlds population.

A VPN, or a Virtual Private Network, is a mechanism for creating a secure connection between a computing device and a computer network, or between two networks, using an insecure communication medium such as the public Internet. A VPN can extend a private network (one that disallows or restricts public access), enabling users to send and receive data across public networks as if their devices were directly connected to the private network.

Shortform link:
https://shortform.com/artem.

In this video we will explore a very interesting paper published in Nature in 2022, which describes the hidden torus in the neuronal activity of cells in the entorhinal cortex, known as grid cells.

Place cell video: https://www.youtube.com/watch?v=iV-EMA5g288&t=158s.

Neural manifolds video: https://www.youtube.com/watch?v=QHj9uVmwA_0

My name is Artem, I’m a computational neuroscience student and researcher.
Socials:
Twitter: https://twitter.com/ArtemKRSV

REFERENCES:

Shortform link:
https://shortform.com/artem.

My name is Artem, I’m a computational neuroscience student and researcher.

In this video we will talk about the fundamental role of lognormal distribution in neuroscience. First, we will derive it through Central Limit Theorem, and then explore how it support brain operations on many scales — from cells to perception.

REFERENCES:

1. Buzsáki, G. & Mizuseki, K. The log-dynamic brain: how skewed distributions affect network operations. Nat Rev Neurosci 15264–278 (2014).
2. Ikegaya, Y. et al. Interpyramid Spike Transmission Stabilizes the Sparseness of Recurrent Network Activity. Cerebral Cortex 23293–304 (2013).
3. Loewenstein, Y., Kuras, A. & Rumpel, S. Multiplicative Dynamics Underlie the Emergence of the Log-Normal Distribution of Spine Sizes in the Neocortex In Vivo. Journal of Neuroscience 31, 9481–9488 (2011).
4. Morales-Gregorio, A., van Meegen, A. & van Albada, S. J. Ubiquitous lognormal distribution of neuron densities across mammalian cerebral cortex. http://biorxiv.org/lookup/doi/10.1101/2022.03.17.480842 (2022) doi:10.1101/2022.03.17.480842.

OUTLINE:

Head to https://linode.com/scishow to get a $100 60-day credit on a new Linode account. Linode offers simple, affordable, and accessible Linux cloud solutions and services.

Scientists like to measure things, but they’ve had a heck of a time doing that with sharpness. And even if no one agrees on exactly how to measure it, our search for better tools has recently led to some of the sharpest objects we’ve ever created.

Hosted by: Hank Green (he/him)
———
Support SciShow by becoming a patron on Patreon: https://www.patreon.com/scishow.
———
Huge thanks go to the following Patreon supporters for helping us keep SciShow free for everyone forever: Matt Curls, Alisa Sherbow, Dr. Melvin Sanicas, Harrison Mills, Adam Brainard, Chris Peters, charles george, Piya Shedden, Alex Hackman, Christopher R, Boucher, Jeffrey Mckishen, Ash, Silas Emrys, Eric Jensen, Kevin Bealer, Jason A Saslow, Tom Mosner, Tomás Lagos González, Jacob, Christoph Schwanke, Sam Lutfi, Bryan Cloer.
———
Looking for SciShow elsewhere on the internet?
SciShow Tangents Podcast: https://scishow-tangents.simplecast.com/
TikTok: https://www.tiktok.com/@scishow.
Twitter: http://www.twitter.com/scishow.
Instagram: http://instagram.com/thescishowFacebook: http://www.facebook.com/scishow.

#SciShow #science #education #learning #complexly.
———
Sources:
https://www.tf.uni-kiel.de/matwis/amat/iss/kap_c/backbone/rc_2_4.html.
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1524-4725.1982.tb01093.x.
https://www.proquest.com/openview/ecab7dfbc6c1cfec6fabf4d0f7…e=gscholar.
https://www.sciencedirect.com/science/article/pii/S0003687006000238
https://physics.aps.org/articles/v9/155
https://www.guinnessworldrecords.com/world-records/sharpest-object-man-made.
https://books.google.com/books?id=gDflDwAAQBAJ&pg=PA71&lpg=P…le&f=false.
https://pubmed.ncbi.nlm.nih.gov/12124714/
https://www.jstor.org/stable/44159720?read-now=1#page_scan_tab_contents.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3380774/
https://www.sciencefocus.com/science/whats-the-sharpest-knife-in-the-world/

scienceofsharp


https://www.sciencedirect.com/science/article/pii/S0924013604007022
https://www.sciencedirect.com/science/article/pii/S0013794406004073
https://www.scientific.net/KEM.293-294.769
https://www.sciencedirect.com/science/article/pii/S0020740318322665
https://www.cambridge.org/core/journals/robotica/article/abs…7BAFBA8B6F
https://link.springer.com/content/pdf/10.1007/s10816-022…;0.pdf?pdf.

Images:
https://commons.wikimedia.org/wiki/File: Crater_knife_edge.jpg.

Dual Grit Sharpening


https://www.researchgate.net/figure/Artificial-sapphire-scal…_354874023
https://www.southampton.ac.uk/biu/galleries/sem.page.
https://commons.wikimedia.org/wiki/File: Obsidian_blade_mounted_in_ornamental_handle,_from_Admiralty_Wellcome_M0015133.jpg.
https://commons.wikimedia.org/wiki/File:Blade_MET_VS1994_35_468.jpeg.
https://commons.wikimedia.org/wiki/File:Macro_sewing_machine_needles.jpg.
https://commons.wikimedia.org/wiki/File:Beveled_tip_of_a_hyp…14_005.JPG
https://www.researchgate.net/figure/SEM-image-of-a-carbon-na…2_51450738
https://commons.wikimedia.org/wiki/File:Scanning_Tunneling_M…ematic.svg.
https://commons.wikimedia.org/wiki/File:%D0%9E%D0%B4%D0%BD%D…%D0%B0.jpg.
https://commons.wikimedia.org/wiki/File:Prehistoric_Denmark_…51010).jpg

The breakthrough experiment could lead to low-energy, wave-based computers and new applications for wireless communications.

Researchers at the Advanced Science Research Center at the CUNY Graduate Center (CUNY ASRC) performed a breakthrough experiment in which they observed time reflections of electromagnetic signals in a tailored metamaterial.

Time reflection versus spatial reflection.


Andrea Alu.

The scientists, who published their findings in a paper in Nature Physics, were able to successfully cause time reversal as well as frequency conversion of broadband electromagnetic waves in their experiments.

An international team of researchers, including those from the University of Tokyo’s Institute for Solid State Physics, has made a groundbreaking discovery. They have successfully demonstrated the use of a single molecule named fullerene as a switch, similar to a transistor. The team achieved this by employing a precisely calibrated laser pulse, which allowed them to control the path of an incoming electron in a predictable manner.

The switching process enabled by fullerene molecules can be significantly faster than the switches used in microchips, with a speed increase of three to six orders of magnitude, depending on the laser pulses utilized. The use of fullerene switches in a network could result in the creation of a computer with capabilities beyond what is currently achievable with electronic transistors. Additionally, they have the potential to revolutionize microscopic imaging devices by providing unprecedented levels of resolution.

Over 70 years ago, physicists discovered that molecules emit electrons in the presence of electric fields, and later on, certain wavelengths of light. The electron emissions created patterns that enticed curiosity but eluded explanation. But this has changed thanks to a new theoretical analysis, the ramification of which could not only lead to new high-tech applications but also improve our ability to scrutinize the physical world itself.