Menu

Blog

Archive for the ‘computing’ category: Page 298

Aug 20, 2022

Neuralink’s brain-computer interface demo shows a monkey playing Pong

Posted by in categories: biotech/medical, computing, Elon Musk, finance, neuroscience

Neuralink, a company co-founded by Elon Musk, has been working on an implantable brain-machine interface since 2016. While it previously demonstrated its progress by showing a Macaque monkey controlling the cursor.

It’s unclear what kind of deal Musk has offered — whether it’s a collaboration or a financial investment —since none of the players responded or confirmed the report with the news organization.


Elon Musk’s last update on Neuralink — his company that is working on technology that will connect the human brain directly to a computer — featured a pig with one of its chips implanted in its brain. Now Neuralink is demonstrating its progress by showing a Macaque with one of the Link chips playing Pong. At first using “Pager” is shown using a joystick, and then eventually, according to the narration, using only its mind via the wireless connection.

Continue reading “Neuralink’s brain-computer interface demo shows a monkey playing Pong” »

Aug 20, 2022

Quantum Computing Will Be Bigger Than the Discovery of Fire!

Posted by in categories: computing, quantum physics

[Editor’s note: “Quantum Computing Will Be Bigger Than the Discovery of Fire!” was previously published in June 2022. It has since been updated to include the most relevant information available.]

It’s commonly appreciated that the discovery of fire was the most profound revolution in human history. And yesterday, I read that a major director at Bank of America (BAC) thinks a technology that hardly anyone is talking about these days could be more critical for humankind than fire!

Aug 20, 2022

Computer made from liquid crystals would ripple with calculations

Posted by in categories: computing, electronics

Liquid crystals consist of rod-shaped molecules that slosh around like a fluid, and in those that are nematic the molecules are mostly parallel to each other. For devices like TV screens, the odd molecule that faces the wrong way has to be removed during the manufacturing process, but these defects are key for building a liquid crystal computer, says Kos.

In ordinary computers, information is stored as a series of bits, electronic versions of 1s and 0s. In Kos and Dunkel’s liquid crystal computer, the information would instead be translated into a series of defective orientations. A liquid crystal defect could encode a different value for every different degree of misalignment with other molecules.

Electric fields could then be used to manipulate the molecules to perform basic calculations, similar to how simple circuits called logic gates work in an ordinary computer. Calculations on the proposed computer would appear as ripples spreading through the liquid.

Aug 19, 2022

Engineers fabricate a chip-free, wireless electronic “skin”

Posted by in categories: computing, entertainment

The team’s sensor design is a form of electronic skin, or “e-skin” — a flexible, semiconducting film that conforms to the skin like electronic Scotch tape. The heart of the sensor is an ultrathin, high-quality film of gallium nitride, a material that is known for its piezoelectric properties, meaning that it can both produce an electrical signal in response to mechanical strain and mechanically vibrate in response to an electrical impulse.

The researchers found they could harness gallium nitride’s two-way piezoelectric properties and use the material simultaneously for both sensing and wireless communication.

In their new study, the team produced pure, single-crystalline samples of gallium nitride, which they paired with a conducting layer of gold to boost any incoming or outgoing electrical signal. They showed that the device was sensitive enough to vibrate in response to a person’s heartbeat, as well as the salt in their sweat, and that the material’s vibrations generated an electrical signal that could be read by a nearby receiver. In this way, the device was able to wirelessly transmit sensing information, without the need for a chip or battery.

Aug 19, 2022

Nvidia Details Grace Hopper CPU Superchip Design: 144 Cores on 4N TSMC Process

Posted by in category: computing

Nvidia shared more performance benchmarks, but as with all vendor-provided performance data, you should take these numbers with a grain of salt. These benchmarks also come with the added caveat that they are conducted pre-silicon, meaning they’re emulated projections that haven’t been tested with actual silicon yet and are “subject to change.” As such, sprinkle some extra salt.

Nvidia’s new benchmark here is the score of 370 with a single Grace CPU in the SpecIntRate 2017 benchmark. This places the chips right at the range we would expect — Nvidia has already shared a multi-CPU benchmark, claiming a score of 740 for two Grace CPUs in the SpecIntRate2017 benchmark. Obviously, this suggests a linear scaling improvement with two chips.

AMD’s current-gen EPYC Milan chips, the current performance leader in the data center, have posted SPEC results ranging from 382 to 424 apiece, meaning the highest-end x86 chips will still hold the lead. However, Nvidia’s solution will have many other advantages, such as power efficiency and a more GPU-friendly design.

Aug 19, 2022

Newly discovered magnetic interactions could lead to novel ways to manipulate electron flow

Posted by in categories: computing, particle physics, quantum physics

Newly discovered magnetic interactions in the Kagome layered topological magnet TbMn6Sn6 could be the key to customizing how electrons flow through these materials. Scientists from the U.S. Department of Energy’s Ames National Laboratory and Oak Ridge National Laboratory conducted an in-depth investigation of TbMn6Sn6 to better understand the material and its magnetic characteristics. These results could impact future technology advancements in fields such as quantum computing, magnetic storage media, and high-precision sensors.

Kagomes are a type of material whose structure is named after a traditional Japanese basket weaving technique. The weave produces a pattern of hexagons surrounded by triangles and vice-versa. The arrangement of the atoms in Kagome metals reproduces the weaving pattern. This characteristic causes electrons within the material to behave in unique ways.

Solid materials have controlled by the characteristics of their electronic band structure. The band structure is strongly dependent on the geometry of the atomic lattice, and sometimes bands may display special shapes such as cones. These special shapes, called topological features, are responsible for the unique ways electrons behave in these materials. The Kagome structure in particular leads to complex and potentially tunable features in the electronic bands.

Aug 18, 2022

Open-source software enables researchers to visualize nanoscale structures in real time

Posted by in categories: computing, nanotechnology, sustainability, transportation

Computer chip designers, materials scientists, biologists and other scientists now have an unprecedented level of access to the world of nanoscale materials thanks to 3D visualization software that connects directly to an electron microscope, enabling researchers to see and manipulate 3D visualizations of nanomaterials in real time.

Developed by a University of Michigan-led team of engineers and software developers, the capabilities are included in a new beta version of tomviz, an open-source 3D data visualization tool that’s already used by tens of thousands of researchers. The new version reinvents the visualization process, making it possible to go from microscope samples to 3D visualizations in minutes instead of days.

Continue reading “Open-source software enables researchers to visualize nanoscale structures in real time” »

Aug 18, 2022

Schrödinger Was Wrong: New Research Overturns 100-Year-Old Understanding of Color Perception

Posted by in categories: computing, mathematics, space

A paradigm shift away from the 3D mathematical description developed by Schrödinger and others to describe how we see color could result in more vibrant computer displays, TVs, textiles, printed materials, and more.

New research corrects a significant error in the 3D mathematical space developed by the Nobel Prize-winning physicist Erwin Schrödinger and others to describe how your eye distinguishes one color from another. This incorrect model has been used by scientists and industry for more than 100 years. The study has the potential to boost scientific data visualizations, improve televisions, and recalibrate the textile and paint industries.

Continue reading “Schrödinger Was Wrong: New Research Overturns 100-Year-Old Understanding of Color Perception” »

Aug 18, 2022

New quantum technology combines free electrons and photons

Posted by in categories: computing, internet, particle physics, quantum physics

Faster computers, tap-proof communication, better car sensors—quantum technologies have the potential to revolutionize our lives just as the invention of computers or the internet once did. Experts worldwide are trying to implement findings from basic research into quantum technologies. To this end, they often require individual particles, such as photons—the elementary particles of light—with tailored properties.

However, obtaining individual particles is complicated and requires intricate methods. In a study recently published in the journal Science, researchers now present a new method that simultaneously generates two individual particles in form of a pair.

Aug 18, 2022

Tech startups are racing to implant computer chips in everyone’s brain — and they’re close to making the sci-fi wizardry a reality

Posted by in categories: business, computing, neuroscience

“Brain computer interfaces” — devices that allow you to operate a computer with your mind — are already in human trials. And they’re about to be a really big business.