Toggle light / dark theme

Like engineers who design high-performance Formula One race cars, scientists want to create high-performance plasmas in twisty fusion systems known as stellarators. Achieving this performance means that the plasma must retain much of its heat and stay within its confining magnetic fields.

To ease the creation of these plasmas, physicists have created a new computer code that could speed up the design of the complicated magnets that shape the plasma, making stellarators simpler and more affordable to build.

Known as QUADCOIL, the code helps scientists rule out plasma shapes that are stable but require magnets with overly complicated shapes. With this information, scientists can instead devote their efforts to designing stellarators that can be built affordably.

Quantum Internet Alliance (QIA) researchers at TU Delft, QuTech, University of Innsbruck, INRIA and CNRS recently announced the creation of the first operating system designed for quantum networks: QNodeOS. The research, published in Nature, marks a major step forward in transforming quantum networking from a theoretical concept to a practical technology that could revolutionize the future of the internet.

“The goal of our research is to bring quantum network technology to all. With QNodeOS we’re taking a big step forward. We’re making it possible—for the first time—to program and execute applications on a quantum network easily,” says Prof. Dr. Stephanie Wehner, Professor of Quantum Computer Science at TU Delft’s quantum technology research institute QuTech, who led the study. “Our work also creates a framework opening entirely new areas of quantum computer science research.”

Simulations of quantum many-body systems are an important goal for nuclear and high-energy physics. Many-body problems involve systems that consist of many microscopic particles interacting at the level of quantum mechanics. They are much more difficult to describe than simple systems with just two particles. This means that even the most powerful conventional computers cannot simulate these problems.

Quantum computing has the potential to address this challenge using an approach called quantum simulation. To succeed, these simulations need theoretical approximations of how quantum computers represent many-body systems. In research on this topic, at the University of Washington developed a new framework to systematically analyze the interplay of these approximations. They showed that the impact of such approximations can be minimized by tuning simulation parameters.

The study is published in the journal Physical Review A.

Quantum systems don’t just transition between phases—they do so in ways that defy classical intuition.

A new experiment has directly observed these “dissipative phase transitions” (DPTs), revealing how quantum states shift under carefully controlled conditions. This breakthrough could unlock powerful new techniques for stabilizing quantum computers and sensors, making them more resilient and precise than ever before.

Quantum phase transitions: a new frontier.

Glen Anderson’s created an analog computer that uses water to demonstrate digital logic

A computer that uses water instead of electricity? That’s what Glen Anderson and his daughter, Dale, are demonstrating at Maker Faire Bay Area this weekend. He invites kids to fill buckets and dump them into one of four water tanks. On Friday, I asked him how it was going. “I am adding 1 and 1 but getting 1,” he said. Something was wrong and he was working to fix it.

Glen said his goal for the project was to demystify how computers “think”

Quantum entanglement is a fundamental phenomenon in nature and one of the most intriguing aspects of quantum mechanics. It describes a correlation between two particles, such that measuring the properties of one instantly reveals those of the other, no matter how far apart they are. This unique property has been harnessed in applications such as quantum computing and quantum communication.

A common method for generating entanglement is through a , which produces with entangled polarizations via spontaneous parametric down-conversion (SPDC): if one photon is measured to be horizontally polarized, the other will always be vertically polarized, and vice versa.

Meanwhile, metasurfaces—ultrathin optical devices—are known for their ability to encode vast amounts of information, allowing the creation of high-resolution holograms. By combining metasurfaces with nonlinear crystals, researchers can explore a promising approach to enhancing the generation and control of entangled photon states.

Histone proteins provide essential structural support for DNA in chromosomes, acting as spools around which DNA strands wrap. These proteins have been well studied, but most current tools to study gene expression rely on RNA sequencing. Histone RNA is unique in that its structure prevents the RNA molecules from being detected by current methods.

Thus, the expression of histone genes may be significantly underestimated in tumor samples. The researchers hypothesized that the increased proliferation of cancer cells leads to a very elevated expression, or hypertranscription, of histones to meet the added demands of cell replication and division.

To test their hypothesis, the researchers used CUTAC profiling to examine and map RNAPII, which transcribes DNA into precursors of messenger RNA. They studied 36 FFPE samples from patients with meningioma – a common and benign brain tumor – and used a novel computational approach to integrate this data with nearly 1,300 publicly available clinical data samples and corresponding clinical outcomes.

In tumor samples, the RNAPII enzyme signals found on histone genes were reliably able to distinguish between cancer and normal samples.

RNAPII signals on histone genes also correlated with clinical grades in meningiomas, accurately predicting rapid recurrence as well as the tendency of whole-arm chromosome losses. Using this technology on breast tumor FFPE samples from 13 patients with invasive breast cancer also predicted cancer aggressiveness.


Using a new technology and computational method, researchers have uncovered a biomarker capable of accurately predicting outcomes in meningioma brain tumors and breast cancers.

In anticipation for my next public lecture, the organizer requested the title of my lecture. I suggested: “Hunting for Aliens.” The organizer expressed concern that some members of the audience might confuse me for a U.S. government employee in search of illegal aliens near the southern border wall. I explained that no two-dimensional wall erected on Earth would protect us from extraterrestrials because they will arrive from above. It is just a matter of time until we notice interstellar travelers arriving without a proper visa. A policy of deporting them back to their home exoplanet will be expensive — over a billion dollars per flight. The trip will also take a long time — over a billion years with conventional chemical propulsion. We will have to learn how to live with these aliens, and promote diversity and inclusion in a Galactic context.

The Sun formed in the last third of cosmic history, so we are relatively late to the party of interstellar travelers. Experienced travelers might have been engaged in their interstellar journeys for billions of years. To properly interpret their recorded diaries and photo albums in terms of the specific stars they visited, we would need to accurately interpret their time measurements.

Imagine an interstellar tourist wearing a mechanical analog watch. Such a timepiece is at best accurate to within 3 seconds per day, or equivalently 30,000 years per billion years. This timing error is comparable to the amount of time it takes to hop from one star to another with chemical propulsion. Interstellar travelers must wear better clocks in order to have a reliable record of time.

Abstract

Agriculture is a sector that plays a crucial role in ensuring food security and sustainable development. However, traditional agriculture practices face challenges such as inefficient irrigation methods and lack of real-time monitoring, leading to water waste and reduced crop yield. Several systems that attempt to address these challenges exist, such as those based on Wi-Fi, Bluetooth, and 3G/4G cellular technology; but also encounter difficulties such as low transmission range, high power consumption, etc. To address all these issues, this paper proposes a smart agriculture monitoring and automatic irrigation system based on LoRa. The system utilizes LoRa technology for long-range wireless communication, Blynk platform for real-time data visualization and control, and ThingSpeak platform for data storage, visualization, and further analysis. The system incorporates multiple components, including a sensor node for data collection, a gateway for data transmission, and an actuator node for irrigation control. Experimental results show that the proposed system effectively monitors collected data such as soil moisture levels, visualizes data in real time, and automatically controls irrigation based on sensor data and user commands. The system proposed in this study provides a cost-effective and efficient solution for sustainable agriculture practices.

Smart Agriculture, Internet of Things, LoRa, Power Consumption, Real-Time Monitoring.

Sustaining growth in storage and computational needs is increasingly challenging. For over a decade, exponentially more information has been produced year after year while data storage solutions are pressed to keep up. Soon, current solutions will be unable to match new information in need of storage. Computing is on a similar trajectory, with new needs emerging in search and other domains that require more efficient systems. Innovative methods are necessary to ensure the ability to address future demands, and DNA provides an opportunity at the molecular level for ultra-dense, durable, and sustainable solutions in these areas.

In this webinar, join Microsoft researcher Karin Strauss in exploring the role of biotechnology and synthetic DNA in reaching this goal. Although we have yet to achieve scalable, general-purpose molecular computation, there are areas of IT in which a molecular approach shows growing promise. These areas include storage as well as computation.

Learn how molecules, specifically synthetic DNA, can store digital data and perform certain types of special-purpose computation, like large-scale similarity search, by leveraging tools already developed by the biotechnology industry. Starting with some background on DNA and its storage potential, you’ll explore the advantages of using DNA for this application. Then, you’ll get a closer look at an end-to-end system, including encoding, synthesizing, reading, and decoding DNA. We’ll also look at an affordable full-stack digital microfluidics platform for wet lab preparations and conclude with a discussion of future hybrid systems.

Together, you’ll explore:

■ The intersection between technology and science of DNA data storage and computation.
■ The many advantages for using DNA to store data compared with other methods.
■ A detailed walkthrough of an end-to-end DNA storage system and its stages.
■ How DNA can be used for image similarity search.