Toggle light / dark theme

Particles can be measured jointly without bringing them together—an advance for quantum communication and computing

But such measurements are notoriously challenging: the instruments used are themselves governed by , and their interaction with particles can alter the very properties they are meant to observe.

“The field of quantum measurements is still poorly understood because it has received little attention so far. Until now, research has mainly focused on the states of themselves, which feature properties—like entanglement or superposition—that are more directly applicable to areas such as quantum cryptography or ,” explains Alejandro Pozas Kerstjens, Senior Research and Teaching Assistant in the Department of Applied Physics, Physics Section, at the UNIGE Faculty of Science.

Study Suggests Quantum Entanglement May Rewrite the Rules of Gravity

A new study proposes that quantum information, encoded in entanglement entropy, directly shapes the fabric of spacetime, offering a fresh path toward unifying gravity and quantum mechanics.

Published in Annals of Physics, the paper presents a reformulation of Einstein’s field equations, arguing that gravity is not just a response to mass and energy, but also to the information structure of quantum fields. This shift, if validated, would mark a fundamental transformation in how physicists understand both gravity and quantum computing.

The study, published by Florian Neukart, of the Leiden Institute of Advanced Computer Science, Leiden University and Chief Product Officer of Terra Quantum, introduces the concept of an “informational stress-energy tensor” derived from quantum entanglement entropy.

How bacteria in our aging guts can elevate risk of leukemia and perhaps more

New findings in Nature reveal how age-related gut changes fuel the growth of pre-leukemic blood cells. Scientists at Cincinnati Children’s along with an international team of researchers have discovered a surprising new connection between gut health and blood cancer risk — one that could transform how we think about aging, inflammation, and the early stages of leukemia.

As we grow older — or in some cases, when gut health is compromised by disease — changes in the intestinal lining allow certain bacteria to leak their byproducts into the bloodstream. One such molecule, produced by specific bacteria, acts as a signal that accelerates the expansion of dormant, pre-leukemic blood cells, a critical step to developing full-blown leukemia.

The team’s findings — published April 23, 2025, in the journal Nature — lay out for the first time how this process works. The study also suggests that this mechanism may reach beyond leukemia to influence risk for other diseases and among older people who share a little-known condition called clonal hematopoiesis of indeterminate potential (CHIP).

Switchable singlet fission: pH triggers molecules to split or emit light for sensors

An international team of researchers has successfully controlled the flow of energy in a molecule with the help of its pH value. The results of the study, led by Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), could contribute to the development of new sensors for medical diagnostics, for example.

The findings are also of interest for building more efficient solar cells and for use in . The results have been published in the journal Nature Communications.

A process called singlet fission is at the center of the study. In future generations of solar cells, it should improve the utilization of light and thus increase efficiency. Until now, a large proportion of the energy that shines onto solar cells is lost and released as heat.

Silicon spin qubits gain ground as a leading candidate for quantum computing

In the rapidly evolving field of quantum computing, silicon spin qubits are emerging as a leading candidate for building scalable, fault-tolerant quantum computers.

A new review titled “Single-Electron Spin Qubits in Silicon for Quantum,” published in Intelligent Computing, highlights the latest advances, challenges and future prospects of silicon spin qubits for quantum computing.

Silicon spin qubits are compatible with existing manufacturing processes, making them promising for universal quantum computers. They have several remarkable properties.

From Blockchain to Brainwaves: Coinbase Co-Founder Fred Ehrsam Enters the Neurotech Race with Non-Invasive BCI Startup Nudge

Fred Ehrsam, billionaire co-founder of Coinbase, is shifting his next big bet from cryptocurrency to the human brain, unveiling a non-invasive brain-computer interface designed to modulate brain activity with sound waves.

Ehrsam’s entry as the latest competitor to join the race to develop accessible brain-computer interfaces (BCIs) follows similar recent efforts from tech leaders like Elon Musk, Jeff Bezos, and Bill Gates.

On April 8, Ehrsam’s startup, Nudge, unveiled its first product, the Nudge Zero. A noninvasive brain interface device that uses ultrasound to modulate brain activity, the technology represents the first start-up venture to pursue this unique approach with BCI technology.