Toggle light / dark theme

From action movies to urban planning, new method for creating large 3D models of urban areas is faster and cheaper

A research team led by Waterloo Engineering has developed a faster, cheaper way to create large-scale, three-dimensional (3D) computer models of urban areas, technology that could impact fields including urban planning, architectural design and filmmaking.

New microwave-to-optical transducer uses rare-earth ions for efficient quantum signal conversion

Quantum technologies, which leverage quantum mechanical effects to process information, could outperform their classical counterparts in some complex and advanced tasks. The development and real-world deployment of these technologies partly relies on the ability to transfer information between different types of quantum systems effectively.

A long-standing challenge in the field of quantum technology is converting quantum signals carried by microwave photons (i.e., particles of electromagnetic radiation in the microwave frequency range) into optical photons (i.e., visible or near visible light particles). Devices designed to perform this conversion are known as microwave-to-optical transducers.

Researchers at the California Institute of Technology recently developed a new microwave-to-optical transducer based on rare-earth ion-doped crystals. Their on-chip transducer, outlined in a paper published in Nature Physics, was implemented using ytterbium-171 ions doped in a YVO4 crystal.

Scientists reveal hidden interface in superconducting qubit material

Researchers from the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory and DOE’s Pacific Northwest National Laboratory (PNNL) have uncovered an unexpected interface layer that may be hindering the performance of superconducting qubits, the building blocks of quantum computers.

Single-photon technology powers 11-mile quantum communications network between two campuses

Researchers at the University of Rochester and Rochester Institute of Technology recently connected their campuses with an experimental quantum communications network using two optical fibers. In a new paper published in Optica Quantum, scientists describe the Rochester Quantum Network (RoQNET), which uses single photons to transmit information about 11 miles along fiber-optic lines at room temperature using optical wavelengths.

Quantum communications networks have the potential to massively improve the security with which information is transmitted, making messages impossible to clone or intercept without detection. Quantum communication works with , or qubits, that can be physically created using atoms, superconductors, and even in defects in materials like diamond. However, photons—individual particles of light—are the best type of qubit for long distance quantum communications.

Photons are appealing for in part because they could theoretically be transmitted over existing fiber-optic telecommunications lines that already crisscross the globe. In the future, many types of qubits will likely be utilized because qubit sources, like or trapped ions, each have their own advantages for specific applications in or different types of quantum sensing.

Benchmarking quantum gates: New protocol paves the way for fault-tolerant computing

Researchers have developed a new protocol for benchmarking quantum gates, a critical step toward realizing the full potential of quantum computing and potentially accelerating progress toward fault-tolerant quantum computers.

The new protocol, called deterministic benchmarking (DB), provides a more detailed and efficient method for identifying specific types of quantum noise and errors compared to widely used existing techniques.

The work is published in the journal Chemical Reviews.

A fully automated tool for species tree inference

A team of engineers at the University of California San Diego is making it easier for researchers from a broad range of backgrounds to understand how different species are evolutionarily related, and support the transformative biological and medical applications that rely on these species trees. The researchers developed a scalable, automated and user-friendly tool called ROADIES that allows scientists to infer species trees directly from raw genome data, with less reliance on the domain expertise and computational resources currently required.

Species trees are critical to solidifying our understanding of how species evolved on a broad scale, but can also help find functional regions of the genome that could serve as drug targets; link physical traits to genomic changes; predict and respond to zoonotic outbreaks; and even guide conservation efforts.

In a new paper published in the journal Proceedings of the National Academy of Sciences on May 2, the researchers, led by UC San Diego electrical and computer engineering professor Yatish Turakhia, showed that ROADIES infers species trees that are comparable in quality with the state-of-the-art studies, but in a fraction of the time and effort. This paper focused on four diverse life forms— , pomace flies, birds and budding yeasts—though ROADIES can be used for any species.