Menu

Blog

Archive for the ‘computing’ category: Page 226

Mar 18, 2023

Qubits put new spin on magnetism: Boosting applications of quantum computers

Posted by in categories: computing, quantum physics

Research using a quantum computer as the physical platform for quantum experiments has found a way to design and characterize tailor-made magnetic objects using quantum bits, or qubits. That opens up a new approach to develop new materials and robust quantum computing.

“With the help of a quantum annealer, we demonstrated a new way to pattern ,” said Alejandro Lopez-Bezanilla, a virtual experimentalist in the Theoretical Division at Los Alamos National Laboratory. Lopez-Bezanilla is the corresponding author of a paper about the research in Science Advances.

“We showed that a magnetic quasicrystal lattice can host states that go beyond the zero and one bit states of classical information technology,” Lopez-Bezanilla said. “By applying a to a finite set of spins, we can morph the magnetic landscape of a quasicrystal object.”

Mar 18, 2023

What is quantum cloud computing, and how does it work?

Posted by in categories: chemistry, computing, quantum physics

Quantum cloud computing makes quantum computing resources available to organizations, academics and other users through cloud technology.

Cloud-based quantum computers function at greater speeds, with higher computing power than conventional computers, because they employ the principles of quantum physics when solving complex computational problems.

Different types of quantum computers exist, such as quantum annealers, analog quantum simulators and universal quantum computers. Quantum annealers are considered the least powerful among quantum computers but work well to solve optimization problems. Analog quantum simulators, on the other hand, are powerful systems that can solve physics and biochemistry problems.

Mar 18, 2023

Pioneering Quantum Physicists Win Nobel Prize in Physics

Posted by in categories: computing, particle physics, quantum physics

The physicists Alain Aspect, John Clauser and Anton Zeilinger have won the 2022 Nobel Prize in Physics for experiments that proved the profoundly strange quantum nature of reality. Their experiments collectively established the existence of a bizarre quantum phenomenon known as entanglement, where two widely separated particles appear to share information despite having no conceivable way of communicating.

Entanglement lay at the heart of a fiery clash in the 1930s between physics titans Albert Einstein on the one hand and Niels Bohr and Erwin Schrödinger on the other about how the universe operates at a fundamental level. Einstein believed all aspects of reality should have a concrete and fully knowable existence. All objects — from the moon to a photon of light — should have precisely defined properties that can be discovered through measurement. Bohr, Schrödinger and other proponents of the nascent quantum mechanics, however, were finding that reality appeared to be fundamentally uncertain; a particle does not possess certain properties until the moment of measurement.

Entanglement emerged as a decisive way to distinguish between these two possible versions of reality. The physicist John Bell proposed a decisive thought experiment that was later realized in various experimental forms by Aspect and Clauser. The work proved Schrödinger right. Quantum mechanics was the operating system of the universe.

Mar 17, 2023

A scalable and programmable quantum phononic processor based on trapped ions

Posted by in categories: computing, particle physics, quantum physics

Quantum computing systems have the potential to outperform classical computers on some tasks, helping to solve complex real-world problems in shorter times. Research teams worldwide have thus been trying to realize this quantum advantage over traditional computers, by creating and testing different quantum systems.

Researchers at Tsinghua University recently developed a new programmable quantum phononic processor with trapped ions. This processor, introduced in a paper in Nature Physics, could be easier to scale up in size than other previously proposed photonic quantum processors, which could ultimately enable better performances on complex problems.

“Originally, we were interested in the proposal of Scott Aaronson and others about Boson sampling, which might show the quantum advantages of simple linear optics and photons,” Kihwan Kim, one of the researchers who carried out the study, told Phys.org. “We were wondering if it is possible to realize it with the in a trapped ion system.”

Mar 17, 2023

Human Cyborg | Documentary | Transhumanism | Neuroscience

Posted by in categories: biotech/medical, computing, cyborgs, education, engineering, neuroscience, transhumanism

Human Cyborg — We’ve all seen Cyborgs in Hollywood blockbusters. But it turns out these fictional beings aren’t so far-fetched.

Human Cyborg (2020)
Director: Jacquelyn Marker.
Writers: Kyle McCabe, Christopher Webb Young.
Stars: Justin Abernethy, Robert Armiger, John Donoghue.
Genre: Documentary.
Country: United States.
Language: English.
Also Known As: Cyborg Revolution.
Release Date: 2020 (United States)

Continue reading “Human Cyborg | Documentary | Transhumanism | Neuroscience” »

Mar 17, 2023

Study uncovers the fundamental mechanisms underlying the formation of polarons in 2D atomic crystals

Posted by in categories: computing, particle physics

Polarons are localized quasiparticles that result from the interaction between fermionic particles and bosonic fields. Specifically, polarons are formed when individual electrons in crystals distort their surrounding atomic lattice, producing composite objects that behave more like a massive particles than electron waves.

Feliciano Giustino and Weng Hong Sio, two researchers at the University of Texas at Austin, recently carried out a study investigating the processes underpinning the formation of polarons in 2D materials. Their paper, published in Nature Physics, outlines some fundamental mechanisms associated with these particles’ formation that had not been identified in previous works.

“Back in 2019, we developed a new theoretical and computational framework to study polarons,” Feliciano Giustino, one of the researchers who carried out the study, told Phys.org. “One thing that caught our attention is that many experimental papers discuss polarons in 3D bulk materials, but we could find only a couple of papers reporting observations of these particles in 2D. So, we were wondering whether this is just a coincidence, or else polarons in 2D are more rare or more elusive than in 3D, and our recent paper addresses this question.”

Mar 16, 2023

Could Brain-Computer Interfaces Lead to ‘Mind Control for Good’?

Posted by in categories: computing, neuroscience

Of all the advanced technologies currently under development, one of the most fascinating and frightening is brain-computer interfaces. They’re fascinating because we still have so much to learn about the human brain, yet scientists are already able to tap into certain parts of it. And they’re frightening because of the sinister possibilities that come with being able to influence, read, or hijack peoples’ thoughts.

But the worst-case scenarios that have been played out in science fiction are just one side of the coin, and brain-computer interfaces could also be a tremendous boon to humanity—if we create, manage, and regulate them correctly. In a panel discussion at South by Southwest this week, four experts in the neuroscience and computing field discussed how to do this.

Continue reading “Could Brain-Computer Interfaces Lead to ‘Mind Control for Good’?” »

Mar 16, 2023

Samsung to spend $228 billion on the world’s largest chip facility as part of South Korea tech plan

Posted by in categories: computing, electronics

Samsung Electronics said Wednesday it plans to invest 300 trillion Korean won ($228 billion) in a new semiconductor complex in South Korea.

Mar 16, 2023

The Impact of Ions on DNA

Posted by in categories: biotech/medical, computing, genetics, health

A study of the electron excitation response of DNA to proton radiation has elucidated mechanisms of damage incurred during proton radiotherapy.

Radiobiology studies on the effects of ionizing radiation on human health focus on the deoxyribonucleic acid (DNA) molecule as the primary target for deleterious outcomes. The interaction of ionizing radiation with tissue and organs can lead to localized energy deposition large enough to instigate double strand breaks in DNA, which can lead to mutations, chromosomal aberrations, and changes in gene expression. Understanding the mechanisms behind these interactions is critical for developing radiation therapies and improving radiation protection strategies. Christopher Shepard of the University of North Carolina at Chapel Hill and his colleagues now use powerful computer simulations to show exactly what part of the DNA molecule receives damaging levels of energy when exposed to charged-particle radiation (Fig. 1) [1]. Their findings could eventually help to minimize the long-term radiation effects from cancer treatments and human spaceflight.

The interaction of radiation with DNA’s electronic structure is a complex process [2, 3]. The numerical models currently used in radiobiology and clinical radiotherapy do not capture the detailed dynamics of these interactions at the atomic level. Rather, these models use geometric cross-sections to predict whether a particle of radiation, such as a photon or an ion, crossing the cell volume will transfer sufficient energy to cause a break in one or both of the DNA strands [46]. The models do not describe the atomic-level interactions but simply provide the probability that some dose of radiation will cause a population of cells to lose their ability to reproduce.

Mar 16, 2023

Building an understanding of quantum turbulence from the ground up

Posted by in categories: computing, particle physics, quantum physics

Most people only encounter turbulence as an unpleasant feature of air travel, but it’s also a notoriously complex problem for physicists and engineers. The same forces that rattle planes are swirling in a glass of water and even in the whorl of subatomic particles. Because turbulence involves interactions across a range of distances and timescales, the process is too complicated to be solved through calculation or computational modeling—there’s simply too much information involved.

Scientists have attempted to tackle the issue by studying the that occurs in superfluids, which is formed by tiny identical whirls called quantized vortices. A key question is how turbulence happens on the and how is it linked to turbulence at larger scales.

Researchers at Aalto University have brought that goal closer with a new study of quantum wave turbulence. Their findings, published in Nature Physics, demonstrate a new understanding of how wave-like motion transfers from macroscopic to microscopic length scales, and their results confirm a theoretical prediction about how the energy is dissipated at small scales.