Toggle light / dark theme

Heavy fermions entangled: Quantum computing’s new frontier?

A joint research team from Japan has observed “heavy fermions,” electrons with dramatically enhanced mass, exhibiting quantum entanglement governed by the Planckian time – the fundamental unit of time in quantum mechanics. This discovery opens up exciting possibilities for harnessing this phenomenon in solid-state materials to develop a new type of quantum computer.

New MIT Device Could Be Key to Faster, More Energy-Efficient Computing and Communications

Solves major problems associated with integrating electronics, photonics in microchip systems.

The MIT device in the green callout could be key to faster, more energy-efficient data communication. It solves a major problem associated with packaging an electrical chip (black, center) with photonic chips (the eight surrounding squares). This image also shows an automated tool placing the final photonic chip into position. Image courtesy Drew Weninger, MIT.

The future of digital computing and communications will involve both electronics—manipulating data with electricity—and photonics, or doing the same with light. Together the two could allow exponentially more data traffic across the globe in a process that is also more energy efficient.

“The bottom line is that integrating photonics with electronics in the same package is the transistor for the 21st century. If we can’t figure out how to do that, then we’re not going to be able to scale forward,” says Lionel Kimerling, the Thomas Lord Professor of Materials Science and Engineering at MIT and director of the MIT Microphotonics Center.

Enter FUTUR-IC, a new research team based at MIT and funded by the National Science Foundation’s Convergence Accelerator through a cooperative agreement. “Our goal is to build a microchip industry value chain that is resource-efficient,” says Anu Agarwal, head of FUTUR-IC and a principal research scientist at the Materials Research Laboratory (MRL).

World’s largest-scale brain-like computer with 2 billion neurons unveiled

Engineers in China unveiled a new generation of brain-like computer that mimics the workings of a macaque monkey’s brain.

Called Darwin Monkey, the system reportedly supports over 2 billion spiking neurons and more than 100 billion synapses, with a neuron count approaching that of a macaque brain.

Reports have revealed that the system consumes approximately 2,000 watts of power under typical operating conditions.

A Quantum Interface Revolution: Discovering a New State of Matter at the Edge of the Unknown

Please find under this blog the latest updates on exciting news happening every day in the world of Materials Science and Materials Chemistry research and development (with a special emphasis on the Computational aspects of these research fields), via our diverse selection of news articles! Many thanks for your interest and support, Dr. Gabriele Mogni Email contact: [email protected] Website: www.qscomputing.com

Improved slime mold algorithm boosts efficiency in e-commerce cloud data migration

As e-commerce platforms grow ever more reliant on cloud computing, efficiency and sustainability have come to the fore as urgent pressures on development. A study published in the International Journal of Reasoning-based Intelligent Systems has introduced an innovative approach to the problem based on a slime mold algorithm (SMA). The work could improve both performance and energy efficiency for e-commerce systems.

At the core of the work is the development of BOSMA—the Balanced Optimization Slime Mold Algorithm. The SMA is a heuristic optimization technique inspired by the natural behavior of slime molds.

Slime molds are useful models for algorithms because they excel at finding efficient paths through complex environments and adapting to changing conditions. Moreover, they do so without any central control system. They can explore their surroundings by sending out multiple tendrils, pseudopodia, in different directions, adjusting their shape and connections in response to feedback such as nutrient availability or obstacles.

Hiding secret codes in light can protect against fake videos

Fact-checkers may have a new tool in the fight against misinformation.

A team of Cornell researchers has developed a way to “watermark” light in videos, which they can use to detect if video is fake or has been manipulated.

The idea is to hide information in nearly-invisible fluctuations of lighting at important events and locations, such as interviews and press conferences or even entire buildings, like the United Nations Headquarters. These fluctuations are designed to go unnoticed by humans, but are recorded as a hidden watermark in any video captured under the special lighting, which could be programmed into computer screens, photography lamps and built-in lighting. Each watermarked light source has a secret that can be used to check for the corresponding watermark in the video and reveal any malicious editing.

Flexible transmitter chip could make wireless devices more energy efficient

Researchers from MIT and elsewhere have designed a novel transmitter chip that significantly improves the energy efficiency of wireless communications, which could boost the range and battery life of a connected device.

Their approach employs a unique scheme to encode digital data into a , which reduces the amount of error in the and leads to more reliable communications.

The compact, flexible system could be incorporated into existing internet-of-things devices to provide immediate gains, while also meeting the more stringent efficiency requirements of future 6G technologies.

First Quantum Bit Made of Antimatter Captured in Physics Breakthrough

CERN scientists have analyzed a particle of antimatter isolated in an undecided quantum state known as a superposition for the first time.

While the quantum behavior of ordinary matter has been studied extensively and even used as the basis of quantum computers in the form of qubits, the breakthrough goes far beyond technological applications, potentially helping physicists understand why we even exist today.

The team suspended an antiproton – the antimatter counterpart of the proton – in a system of electromagnetic traps, and suppressed environmental interference that would mess with the particle’s delicate quantum state.

Revolutionizing 2D Electronics: Freestanding HZO Membranes Unlock High-κ Integration for Next-Gen Transistors

In a significant advancement for nanoelectronics, an international team of researchers from National Chung Hsing University, Kansai University, and National Cheng Kung University has developed a new strategy to integrate freestanding hafnium zirconium oxide (HZO) membranes into 2D field-effect transistors (FETs). This innovation, published in Nature Electronics, promises to overcome one of the main bottlenecks in the adoption of 2D semiconductors: the lack of scalable, high-κ dielectric integration.

Why 2D Semiconductors Need Better Gate Dielectrics

Two-dimensional semiconductors like molybdenum disulfide (MoS₂) have long been heralded as successors to silicon, offering exceptional electrical properties at atomically thin dimensions. However, their commercialization in logic devices has stalled due to a critical integration challenge: embedding a gate dielectric that both insulates and enables effective gate control.

/* */