Toggle light / dark theme

Smart OLED Tattoos: Engineers Create Light-Emitting Tattoo

Scientists at UCL and the IIT-Istituto Italiano di Tecnologia (Italian Institute of Technology) have created a temporary tattoo with light-emitting technology used in TV and smartphone screens, paving the way for a new type of “smart tattoo” with a range of potential uses.

The technology, which uses organic light-emitting diodes (OLEDs), is applied in the same way as water transfer tattoos. That is, the OLEDs are fabricated onto temporary tattoo paper and transferred to a new surface by being pressed on to it and dabbed with water.

The researchers, who described the process in a new paper in the journal Advanced Electronic Materials, say it could be combined with other tattoo electronics to, for instance emit light when an athlete is dehydrated, or when we need to get out of the sun to avoid sunburn. OLEDs could be tattooed on packaging or fruit to signal when a product has passed its expiry date or will soon become inedible, or used for fashion in the form of glowing tattoos.

Google’s new quantum chip cuts key error rate

Currently, dark matter detection requires specialized laboratories with costly equipment. ODIN has the potential to overcome this limitation.

“ODIN’s sensitivity is primarily dependent on phonon density rather than target volume, in contrast to existing systems. This feature may enable compact, low-cost detectors, with the ability to perform lock-in dark matter detection by periodically depopulating the phonon mode,” the study authors explain.

Moreover, the proposed device design features only one optomechanical cavity. Instruments with multiple cavities could result in more exciting results.

Intel Foundry Unveils “Innovative” Strategies For Transistors & Packaging Technologies, Enhancing Silicon Scalability

Intel Foundry has showcased “breakthrough” developments in the realm of transistor and packaging technologies, revealing material and silicon innovation.

Intel Foundry Showcases “Subtractive Ruthenium” & New Transistor Technologies To Ensure Node Scalability

[Press Release]: Today at the IEEE International Electron Devices Meeting (IEDM) 2024, Intel Foundry unveiled breakthroughs to help drive the semiconductor industry forward into the next decade and beyond. Intel Foundry showcased new material advancements that help improve interconnections within a chip, resulting in up to 25% capacitance by using subtractive ruthenium.

‘A truly remarkable breakthrough’: Google’s new quantum chip achieves accuracy milestone

Researchers at Google have built a chip that has enabled them to demonstrate the first ‘below threshold’ quantum calculations — a key milestone in the quest to build quantum computers that are accurate enough to be useful.

The experiment, described on 9 December in Nature1, shows that with the right error-correction techniques, quantum computers can perform calculations with increasing accuracy as they are scaled up — with the rate of this improvement exceeding a crucial threshold. Current quantum computers are too small and too error-prone for most commercial or scientific applications.

Colombia’s First Quantum Computer: Advancing Education, Research, and Technological Innovation

PRESS RELEASE — Thirty years ago, the University of the Andes made the first internet connection in Colombia, and on Tuesday, December 3, the country’s first quantum computer will be unveiled. This acquisition marks a turning point in education and technological research, fostering interdisciplinary collaboration and enhancing ongoing efforts by researchers at the University of the Andes and other institutions.

The University’s Faculties of Science and Engineering announced the arrival of the device, which will enable students and professors to explore fundamental aspects of quantum computing. This emerging technology seeks to solve problems and process information differently by leveraging the laws of quantum physics.

Professor Julián Rincón, a theoretical physicist, explains that this quantum computer employs a technique known as Nuclear Magnetic Resonance and operates at room temperature. This makes it particularly suitable for educational purposes, as it is easy to assemble and provides a straightforward way to test fundamental concepts. “This isn’t just a faster conventional computer; it’s a completely new way of processing information, based on the laws of quantum physics,” he clarifies.

Vortex electric field discovery could impact quantum computing

A new vortex electric field with the potential to enhance future electronic, magnetic and optical devices has been observed by researchers from City University of Hong Kong (CityUHK) and local partners.

The research, “Polar and quasicrystal vortex observed in twisted-bilayer molybdenum disulfide” published in Science, is highly valuable as it can upgrade the operation of many devices, including strengthening memory stability and computing speed.

With further research, the discovery of the vortex electric field can also impact the fields of quantum computing, spintronics, and nanotechnology.

/* */