Toggle light / dark theme

Much like the humans that created them, computers find physics hard, but quantum mechanics even harder. But a new technique created by three University of Chicago scientists allows computers to simulate certain challenging quantum mechanical effects in complex electronic materials with far less effort.

By making these simulations more accurate and efficient, the scientists hope the technique could help discover new molecules and materials, such as new types of solar cells or quantum computers.

“This advance holds immense potential for furthering our understanding of molecular phenomena, with significant implications for chemistry, , and related fields,” said scientist Daniel Gibney, a University of Chicago Ph.D. student in chemistry and first author on the paper, published Dec. 14 in Physical Review Letters.

A team of researchers led by Professor Young S. Park at UNIST’s Department of Chemistry has achieved a significant breakthrough in the field of organic semiconductors. Their successful synthesis and characterization of a novel molecule called “BNBN anthracene” has opened up new possibilities for the development of advanced electronic devices.

The paper is published in the journal Angewandte Chemie International Edition.

Organic semiconductors play a crucial role in improving the movement and light properties of electrons in carbon-centered organic electronic devices. The team’s research focused on enhancing the chemical diversity of these semiconductors by replacing carbon-carbon (C−C) bonds with isoelectronic boron-nitrogen (B−N) bonds. This substitution allows for precise modulation of the electronic properties without significant structural changes.

Kaiserslautern physicists in the team of Professor Dr. Herwig Ott have succeeded for the first time in directly observing pure trilobite Rydberg molecules. Particularly interesting is that these molecules have a very peculiar shape, which is reminiscent of trilobite fossils. They also have the largest electric dipole moments of any molecule known so far.

The researchers used a dedicated apparatus that is capable of preparing these fragile at ultralow temperatures. The results reveal their chemical binding mechanisms, which are distinct from all other chemical bonds. The study was published in the journal Nature Communications.

For their experiment, the physicists used a cloud of rubidium that was cooled down in an to about 100 microkelvin—0.0001 degrees above absolute zero. Subsequently, they excited some of these atoms into a so-called Rydberg state using lasers. “In this process, the outermost electron in each case is brought into far-away orbits around the atomic body,” explains Professor Herwig Ott, who researches ultracold quantum gases and quantum atom optics at University of Kaiserslautern-Landau.

View show notes here: https://bit.ly/3GJjQKz Become a member to receive exclusive content: https://peterattiamd.com/subscribe/ Sign up to receive Peter’s email newsletter: https://peterattiamd.com/newsletter/ Colleen Cutcliffe is an expert in molecular biology and co-founder of Pendulum Therapeutics, a company working to develop treatments for a variety of diseases by targeting the microbiome. In this episode, Colleen delves into the complexity of the microbiome, how it is tested, and how it changes over time. She explores how probiotics, prebiotics, and postbiotics affect the gut and makes a compelling case that well-developed products have the potential not only to enhance gut health but also to positively influence overall metabolic well-being. Colleen emphasizes the significance of a high-fiber diet in sustaining a thriving gut microbiome, shares insights on minimizing microbiome damage during antibiotic use, provides tips for fostering and preserving a healthy gut, and much more. We discuss: 0:00:00 — Intro 0:00:34 — Colleen’s background and current focus 0:03:08 — The basics of the microbiome 0:12:37 — The study of the human microbiome 0:17:42 — Categories of bacteria, and the implications on health of the rapid evolution of bacteria 0:27:51 — Methods for measuring and understanding the microbiome, and key indicators of microbiome health 0:39:52 — The important role of fiber for promoting gut health through the production of butyrate 0:47:21 — The case for manipulating gut bacteria via fecal microbiota transplant (FMT) 0:53:25 — Dynamics of the microbiome: the gut-brain connection and how antibiotics, nutrition, stress, and more impact the microbiome’s diversity and function 0:59:16 — Factors that influence the vaginal microbiom 1:03:46 — The effect of gut microbes on obesity and challenges with fecal transplants in people 1:06:25 — Beneficial strains of gut bacteria and strains commonly found in probiotics 1:16:35 — The difference between a probiotic and prebiotic, and how CFUs are a measure of the “active ingredient” 1:21:47 — Considerations about how probiotic strains are produced, and more on the meaning of CFU 1:31:12 — Mitigating the effect of antibiotics on the microbiome 1:39:58 — What do we know about the effect of artificial sweeteners on the gut microbiome? 1:47:02 — Why Akkermansia is a keystone strain with implications for metabolic health and an individual’s response to dietary interventions 1:58:14 — The essential steps necessary to develop a robust probiotic for optimal health support 2:01:45 — How Akkermansia helps control blood glucose, and potential implications of Akkermansia in weight loss, diabetes management, and more 2:22:46 — Pendulum Therapeutics’ commitment to rigorous product develop 2:29:54 — Details about the probiotic “Glucose Control” and other probiotics developed by Pendulum Therapeutics 2:38:43 — Further studies of Akkermansia that have been proposed or are underway ——– About: The Peter Attia Drive is a deep-dive podcast focusing on maximizing longevity, and all that goes into that from physical to cognitive to emotional health. With over 70 million episodes downloaded, it features topics including exercise, nutritional biochemistry, cardiovascular disease, Alzheimer’s disease, cancer, mental health, and much more. Peter Attia is the founder of Early Medical, a medical practice that applies the principles of Medicine 3.0 to patients with the goal of lengthening their lifespan and simultaneously improving their healthspan.

Causality is key to our experience of reality: dropping a glass, for example, causes it to smash, so it can’t smash before it’s dropped. But in the quantum world those rules don’t necessarily apply, and scientists have now demonstrated how that weirdness can be harnessed to charge a quantum battery.

In a sense, you could say that quantum batteries are powered by paradoxes. On paper, they work by storing energy in the quantum states of atoms and molecules – but of course, as soon as the word “quantum” enters the conversation you know weird stuff is about to happen. In this case, a new study has found that quantum batteries could work by violating cause-and-effect as we know it.

“Current batteries for low-power devices, such as smartphones or sensors, typically use chemicals such as lithium to store charge, whereas a quantum battery uses microscopic particles like arrays of atoms,” said Yuanbo Chen, an author of the study. “While chemical batteries are governed by classical laws of physics, microscopic particles are quantum in nature, so we have a chance to explore ways of using them that bend or even break our intuitive notions of what takes place at small scales. I’m particularly interested in the way quantum particles can work to violate one of our most fundamental experiences, that of time.”

Experiments verify a theory that explains why paint doesn’t dry any faster on a dry day than on a wet day.

You might think that polymer solutions like paint dry more slowly on a humid day than on a dry day. But researchers have now verified a theory that explains why the evaporation rate of the water or another solvent in a polymer solution can be independent of the ambient humidity [1]. The experiments show that, as predicted, water evaporation drives the polymer molecules toward the surface, where they form a dense layer that hinders evaporation and shields the surface from humidity effects. This phenomenon may affect the rate at which virus-containing respiratory droplets evaporate and thus could help explain the seasonal dependence of viral infections.

Humidity-independent evaporation is an advantage in many situations. For example, to preserve the body’s hydration, human skin maintains a nearly constant evaporation rate thanks to cell membranes whose lipid molecules can be reconfigured to adjust the sweat evaporation rate. This reconfiguration is an example of an active process. In 2017, Jean-Baptiste Salmon, a chemical engineer at the University of Bordeaux in France, proposed that humidity-independent evaporation does not require an active response [2]. Instead, his theory suggested that it occurs whenever the solvent evaporates from a solution of large molecules, a process that was already known to draw those molecules toward the drying interface. He predicted that, after the large molecules form a dense layer, the solvent’s evaporation rate will remain unchanged whether the surroundings are bone dry or at 100% humidity. However, the theory has not been tested with a nonactive polymer solution.

NASA’s Cassini probe has uncovered compelling evidence hinting at the potential existence of life on Saturn’s icy moon Enceladus.


Interestingly, a detailed review of Cassini’s data has revealed that the subsurface ocean hidden beneath the moon’s frozen surface is a rich source of chemical energy.

This disclosure strengthens the case for exploring the possibility of life within the ocean of this frozen celestial body.

According to the research, the more chemical energy there is on this moon, the higher the likelihood that life could flourish and endure.

Targeted drugs aim to pinpoint the exact location in the body where diseased tissue is located and where the medicine is required. The manifold benefits of administering a targeted drug include heightened efficacy, as the drug is meticulously designed for specificity, thereby reducing side effects, and minimizing damage to healthy tissue. Consequently, this approach enhances the patient’s quality of life during treatment.

Oligonucleotides (ONs), specifically designed short chains of DNA or RNA, have emerged as a crucial tool with immense potential in personalized medicine. These therapeutic ONs are already in use for conditions, such as certain types of muscular dystrophy and , which conventional drugs cannot address.

Depending on the type, ONs can function by, preventing or changing the production of a protein in the cell, particularly beneficial in diseases caused by the overproduction of a specific protein.