Menu

Blog

Archive for the ‘chemistry’ category: Page 63

Dec 18, 2023

Quantum batteries could charge by breaking our understanding of time

Posted by in categories: chemistry, mobile phones, particle physics, quantum physics

Causality is key to our experience of reality: dropping a glass, for example, causes it to smash, so it can’t smash before it’s dropped. But in the quantum world those rules don’t necessarily apply, and scientists have now demonstrated how that weirdness can be harnessed to charge a quantum battery.

In a sense, you could say that quantum batteries are powered by paradoxes. On paper, they work by storing energy in the quantum states of atoms and molecules – but of course, as soon as the word “quantum” enters the conversation you know weird stuff is about to happen. In this case, a new study has found that quantum batteries could work by violating cause-and-effect as we know it.

“Current batteries for low-power devices, such as smartphones or sensors, typically use chemicals such as lithium to store charge, whereas a quantum battery uses microscopic particles like arrays of atoms,” said Yuanbo Chen, an author of the study. “While chemical batteries are governed by classical laws of physics, microscopic particles are quantum in nature, so we have a chance to explore ways of using them that bend or even break our intuitive notions of what takes place at small scales. I’m particularly interested in the way quantum particles can work to violate one of our most fundamental experiences, that of time.”

Dec 18, 2023

Why Humidity Doesn’t Affect Drying Paint

Posted by in categories: biotech/medical, chemistry

Experiments verify a theory that explains why paint doesn’t dry any faster on a dry day than on a wet day.

You might think that polymer solutions like paint dry more slowly on a humid day than on a dry day. But researchers have now verified a theory that explains why the evaporation rate of the water or another solvent in a polymer solution can be independent of the ambient humidity [1]. The experiments show that, as predicted, water evaporation drives the polymer molecules toward the surface, where they form a dense layer that hinders evaporation and shields the surface from humidity effects. This phenomenon may affect the rate at which virus-containing respiratory droplets evaporate and thus could help explain the seasonal dependence of viral infections.

Humidity-independent evaporation is an advantage in many situations. For example, to preserve the body’s hydration, human skin maintains a nearly constant evaporation rate thanks to cell membranes whose lipid molecules can be reconfigured to adjust the sweat evaporation rate. This reconfiguration is an example of an active process. In 2017, Jean-Baptiste Salmon, a chemical engineer at the University of Bordeaux in France, proposed that humidity-independent evaporation does not require an active response [2]. Instead, his theory suggested that it occurs whenever the solvent evaporates from a solution of large molecules, a process that was already known to draw those molecules toward the drying interface. He predicted that, after the large molecules form a dense layer, the solvent’s evaporation rate will remain unchanged whether the surroundings are bone dry or at 100% humidity. However, the theory has not been tested with a nonactive polymer solution.

Dec 17, 2023

Saturn’s icy moon hosts vital life source, key molecule, reveals NASA

Posted by in categories: chemistry, energy, space

NASA’s Cassini probe has uncovered compelling evidence hinting at the potential existence of life on Saturn’s icy moon Enceladus.


Interestingly, a detailed review of Cassini’s data has revealed that the subsurface ocean hidden beneath the moon’s frozen surface is a rich source of chemical energy.

This disclosure strengthens the case for exploring the possibility of life within the ocean of this frozen celestial body.

Continue reading “Saturn’s icy moon hosts vital life source, key molecule, reveals NASA” »

Dec 16, 2023

New chemical method advances toward targeted RNA medicine

Posted by in categories: biotech/medical, chemistry

Targeted drugs aim to pinpoint the exact location in the body where diseased tissue is located and where the medicine is required. The manifold benefits of administering a targeted drug include heightened efficacy, as the drug is meticulously designed for specificity, thereby reducing side effects, and minimizing damage to healthy tissue. Consequently, this approach enhances the patient’s quality of life during treatment.

Oligonucleotides (ONs), specifically designed short chains of DNA or RNA, have emerged as a crucial tool with immense potential in personalized medicine. These therapeutic ONs are already in use for conditions, such as certain types of muscular dystrophy and , which conventional drugs cannot address.

Depending on the type, ONs can function by, preventing or changing the production of a protein in the cell, particularly beneficial in diseases caused by the overproduction of a specific protein.

Dec 16, 2023

This Is How You Use DOPAMINE As A SUPERPOWER In Your Life

Posted by in categories: chemistry, neuroscience

The pursuit of rewards can lead to addiction and insensitivity to pleasure, but managing neurochemistry and focusing on the process can help achieve fulfillment and reduce addiction.

Questions to inspire discussion.

Continue reading “This Is How You Use DOPAMINE As A SUPERPOWER In Your Life” »

Dec 15, 2023

Computational model captures the elusive transition states of chemical reactions

Posted by in categories: chemistry, computing

During a chemical reaction, molecules gain energy until they reach what’s known as the transition state — a point of no return from which the reaction must proceed.


MIT chemists have developed a computational model that can rapidly predict the structure of the transition state of a reaction (left structure), if it is given the structure of a reactant (middle) and product (right).

Dec 15, 2023

New way to charge batteries harnesses the power of ‘indefinite causal order’

Posted by in categories: chemistry, computing, engineering, quantum physics, sustainability

Batteries that exploit quantum phenomena to gain, distribute and store power promise to surpass the abilities and usefulness of conventional chemical batteries in certain low-power applications. For the first time, researchers, including those from the University of Tokyo, take advantage of an unintuitive quantum process that disregards the conventional notion of causality to improve the performance of so-called quantum batteries, bringing this future technology a little closer to reality.

When you hear the word “quantum,” the physics governing the subatomic world, developments in quantum computers tend to steal the headlines, but there are other upcoming quantum technologies worth paying attention to. One such item is the which, though initially puzzling in name, holds unexplored potential for sustainable energy solutions and possible integration into future electric vehicles. Nevertheless, these new devices are poised to find use in various portable and low-power applications, especially when opportunities to recharge are scarce.

At present, quantum batteries only exist as laboratory experiments, and researchers around the world are working on the different aspects that are hoped to one day combine into a fully functioning and practical application. Graduate student Yuanbo Chen and Associate Professor Yoshihiko Hasegawa from the Department of Information and Communication Engineering at the University of Tokyo are investigating the best way to charge a quantum battery, and this is where time comes into play. One of the advantages of quantum batteries is that they should be incredibly efficient, but that hinges on the way they are charged.

Dec 14, 2023

Michael Levin talk on bioelectricity at Stanford Chemical Engineering Colloquium

Posted by in categories: chemistry, engineering

Dec 14, 2023

Revolutionizing the Cosmos: Deep Learning Supercharges Galactic Calculations

Posted by in categories: chemistry, cosmology, robotics/AI

Supernovae, which are exploding stars, play a pivotal role in galaxy formation and evolution. However, simulating these phenomena accurately and efficiently has been a significant challenge. For the first time, a team including researchers from the University of Tokyo has utilized deep learning to enhance supernova simulations. This advancement accelerates simulations, crucial for understanding galaxy formation and evolution, as well as the evolution of chemistry that led to life.

When you hear about deep learning, you might think of the latest app that sprung up this week to do something clever with images or generate humanlike text. Deep learning might be responsible for some behind-the-scenes aspects of such things, but it’s also used extensively in different fields of research. Recently, a team at a tech event called a hackathon applied deep learning to weather forecasting. It proved quite effective, and this got doctoral student Keiya Hirashima from the University of Tokyo’s Department of Astronomy thinking.

Dec 13, 2023

Wild new NASA plasma tech reduces drag during hypersonic flight

Posted by in categories: chemistry, government, military, satellites

According to a notice the agency posted on the government contracting portal SAM.gov on Thursday (Dec. 7), the technology was developed by researchers at NASA’s Langley Research Center in Virginia and has been studied for use in a simulated entry into Neptune’s atmosphere. A separate 2021 study of the same technology studied it for use in the atmosphere of Mars.

Related: Space Force wants ‘Foo Fighter’ satellites to track hypersonic missiles

The agency claims its MHD system is “simpler than conventional methods for control of hypersonic craft (e.g., chemical propulsion, shifting flight center of gravity, or trim tabs) and enables new entry, descent, and landing mission architectures.”

Page 63 of 329First6061626364656667Last