Menu

Blog

Archive for the ‘chemistry’ category: Page 6

Aug 17, 2024

Current Events: Bioelectrical Gradients Guide Stem Cell Morphology

Posted by in categories: biotech/medical, chemistry, neuroscience

ABOVE: Researchers recapitulate electrical gradients in vitro to help guide stem cell differentiation for neural regeneration. ©istock, Cappan.

The dance of development is electric. Bioelectrical gradients choreograph embryonic growth, signaling to stem cells what cell types they should become, where they should travel, who their neighbors should be, and what structures they should form.1 The intensity and location of these signals serve as an electrical scaffold to map out anatomical features and guide development. Bioelectricity also shapes tissue regeneration.2 Tapping into these mechanisms is of special interest to researchers who grapple with the challenge of regenerating injured nerves.3

One such curious team from Stanford University and the University of Arizona recently reported a new approach using electrically conductive hydrogels to induce differentiation of human mesenchymal stem cells into neurons and oligodendrocytes in vitro.4 Their findings, published in the Journal of Materials Chemistry B, provide important proof of principle for future studies of biocompatible materials to electrically augment transplanted and endogenous cells after injury.

Aug 16, 2024

New technique prints metal oxide thin film circuits at room temperature

Posted by in categories: chemistry, engineering

Researchers have demonstrated a technique for printing thin metal oxide films at room temperature, and have used the technique to create transparent, flexible circuits that are both robust and able to function at high temperatures.

The paper, “Ambient Printing of Native Oxides for Ultrathin Transparent Flexible Circuit Boards,” was published August 15 in the journal Science.

Continue reading “New technique prints metal oxide thin film circuits at room temperature” »

Aug 16, 2024

Engineers design tiny batteries for powering cell-sized robots

Posted by in categories: biotech/medical, chemistry, robotics/AI

A tiny battery designed by MIT engineers could enable the deployment of cell-sized, autonomous robots for drug delivery within in the human body, as well as other applications such as locating leaks in gas pipelines.

The , which is 0.1 millimeters long and 0.002 millimeters thick—roughly the thickness of a human hair—can capture oxygen from air and use it to oxidize zinc, creating a current of up to 1 volt. That is enough to power a small circuit, sensor, or actuator, the researchers showed.

“We think this is going to be very enabling for robotics,” says Michael Strano, the Carbon P. Dubbs Professor of Chemical Engineering at MIT and the senior author of the study. “We’re building robotic functions onto the battery and starting to put these components together into devices.”

Aug 16, 2024

Geochemistry study links ancient anorthosites to early Earth’s hot subduction

Posted by in category: chemistry

A team of researchers has made strides in understanding the formation of massif-type anorthosites, enigmatic rocks that only formed during the middle part of Earth’s history. These plagioclase-rich igneous rock formations, which can cover areas as large as 42,000 square kilometers and host titanium ore deposits, have puzzled scientists for decades due to conflicting theories about their origins.

Aug 15, 2024

New semiconductor material AlYN promises more energy-efficient and powerful electronics

Posted by in categories: chemistry, energy, physics

Due to its excellent material properties and its adaptability to gallium nitride (GaN), AlYN has enormous potential for use in energy-efficient high-frequency and high-performance electronics for information and communications technology.

Aluminum yttrium nitride (AlYN) has attracted the interest of many research groups around the world due to its outstanding material properties. However, the growth of the material has been a major challenge. Until now, AlYN could only be deposited by magnetron sputtering.

Researchers at the Fraunhofer Institute for Applied Solid State Physics IAF have now succeeded in fabricating the new material using metal-organic chemical vapor deposition (MOCVD) technology, thus enabling the development of new, diverse applications.

Aug 14, 2024

Newly found star 30 times the size of the sun has an unexpected chemical composition

Posted by in categories: chemistry, cosmology

J0524-0336 contains 100,000 times more lithium than the sun does at its current age. This amount challenges the prevailing models of how stars evolve.

Aug 14, 2024

NASA’s Perseverance Rover Uncovers Water-Borne Minerals in Mars’ Jezero Crater

Posted by in categories: chemistry, space

“These are the oldest rocks that may have been deposited by water, that we’ve ever laid hands or rover arms on,” said Dr. Benjamin Weiss. “That’s exciting, because it means these are the most promising rocks that may have preserved fossils, and signatures of life.”


Did life once exist on Mars, and if so, where will we find it? This is what a recent study published in AGU Advances hopes to address as a team of several dozen international researchers led by the Massachusetts Institute of Technology (MIT) investigated rocks samples obtained by NASA’s Perseverance (Percy) rover obtained in Jezero Crater on Mars, and which allegedly contain minerals only found in water. This study holds the potential to help scientists better understand the conditions for life to have emerged on the Red Planet long ago, along with identifying what evidence could be used to find life elsewhere in the solar system.

For the study, the researchers analyzed data obtained from seven rock samples collected by Percy along Jezero’s western slope, which scientists have hypothesized was an ancient lake long ago. After examining Percy’s images of the surrounding area and the chemical analyses from the rock samples, the team determined that the rocks contain evidence of water, meaning this location likely contained a lake long ago. However, the potential for this lake having life is still unknown since the team did not identify evidence of organic matter within the samples. Despite this, the team determined that the rocks were created more than 3.5 billion years ago, long before life emerged on the Earth.

Continue reading “NASA’s Perseverance Rover Uncovers Water-Borne Minerals in Mars’ Jezero Crater” »

Aug 13, 2024

Quantum Entanglement in Neurons May Actually Explain Consciousness

Posted by in categories: chemistry, neuroscience, particle physics, quantum physics

A silent symphony is playing inside your brain right now as neurological pathways synchronize in an electromagnetic chorus that’s thought to give rise to consciousness.

Yet how various circuits throughout the brain align their firing is an enduring mystery, one some theorists suggest might have a solution that involves quantum entanglement.

The proposal is a bold one, not least because quantum effects tend to blur into irrelevance on scales larger than atoms and molecules. Several recent findings are forcing researchers to put their doubts on hold and reconsider whether quantum chemistry might be at work inside our minds after all.

Aug 13, 2024

Protein reduces toxicity of drug-delivery material made of graphene oxide

Posted by in categories: biotech/medical, chemistry, nanotechnology

A new publication has discovered ways to reduce the toxicity of graphene oxide (GO), an ultra-thin sheet of nanomaterial derived from graphite, laying the groundwork to use it as a drug delivery system.

Professor Khuloud Al-Jamal, who led the study, said: “Researchers have been incredibly excited in the potential medical applications of graphene since experiments into the nanomaterial were recognised with the Nobel Prize in Physics in 2010. However, concerns around toxicity have remained a consistent obstacle.”

Graphene oxide (GO) is an ultra-thin sheet derived from graphite. It is similar to pencil lead but includes attached oxygen atoms, making it compatible with water. Its unique physical and chemical properties mean it has a high capacity for carrying antibiotics and anticancer drugs, among others, as well as targeting specific cells, making it a potentially effective drug delivery system.

Aug 13, 2024

Transforming Construction with Nanotechnology

Posted by in categories: chemistry, climatology, habitats, nanotechnology, sustainability

Nanomaterials, with their distinctive physical and chemical properties, hold significant promise for revolutionizing the housing construction industry. By enabling the development of stronger, more durable, efficient, and sustainable structures, nanotechnology offers solutions to challenges such as climate change and global urbanization.

The use of nanomaterials in construction began in the mid-1980s with the advent of carbon-based structures. Since then, their application has become more widespread, driving innovations in the sector. Today, advances in nanotechnology are leading to the creation of increasingly sophisticated, selective, and efficient nanomaterials, broadening the scope of construction capabilities.

This study explored the application of various nanomaterials—titanium dioxide, carbon nanotubes (CNTs), nanosilica, nanocellulose, nanoalumina, and nanoclay—in residential construction. These materials were chosen for their potential to enhance the structural integrity, thermal performance, and overall functionality of building materials used in housing.

Page 6 of 328First345678910Last