Toggle light / dark theme

A geological timescale for bacterial evolution and oxygen adaptation

Microbial life has dominated Earth’s history but left a sparse fossil record, greatly hindering our understanding of evolution in deep time. However, bacterial metabolism has left signatures in the geochemical record, most conspicuously the Great Oxidation Event (GOE). We combine machine learning and phylogenetic reconciliation to infer ancestral bacterial transitions to aerobic lifestyles, linking them to the GOE to calibrate the bacterial time tree. Extant bacterial phyla trace their diversity to the Archaean and Proterozoic, and bacterial families prior to the Phanerozoic. We infer that most bacterial phyla were ancestrally anaerobic and adopted aerobic lifestyles after the GOE. However, in the cyanobacterial ancestor, aerobic metabolism likely predated the GOE, which may have facilitated the evolution of oxygenic photosynthesis.

Scientists advance a greener way to produce iron: Process could help cut carbon emissions in the steel industry

University of Oregon chemists are bringing a greener way to make iron metal for steel production closer to reality, a step towards cleaning up an industry that’s one of the biggest contributors to carbon emissions worldwide. The research was published in ACS Energy Letters.

Last year, UO chemist Paul Kempler and his team reported a way to create iron with electrochemistry, using a series of chemical reactions that turn saltwater and into pure iron metal.

In their latest work, they’ve optimized the starting materials for the process, identifying which kinds of iron oxides will make the chemical reactions the most cost-effective. That’s a key to making the process work at an industrial scale.

Scientists unveil MacGyver-like energy breakthrough with unexpected materials: ‘Materials … have garnered considerable attention’

In answer, the team needed to develop an affordable catalyst that could improve the salty electrode. For reference, when batteries operate, ions move between the anode and cathode through the electrolyte, per a U.S. Department of Energy description.

This is where wood waste and urine enter the lab, replacing platinum as a catalyst. The UNIST creation facilitates effective electrochemical reactions and quick discharges. The experts used lignin, abundant in wood and used to make paper and biofuels, in combination with urea. Urea is a nitrogen-rich substance found in wastewater, UNIST reported.

“Conventional electrocatalysts, primarily noble metals, are scarce and expensive. In this context, carbon materials derived from biowaste have garnered considerable attention,” according to the abstract.

Earth’s First Crust May Have Looked Surprisingly Like The One We Have Today

Geologists have made certain assumptions about how the crust making up our planet’s earliest surface formed, but a new study has found that Earth’s very first protocrust was surprisingly similar to the shell of solid rock in place today.

It may mean a complete rethink of how Earth’s coat transitioned from a skin of boiling magma to the shifting armor of tectonic plates we now live on, according to the international team of researchers behind the study.

“Scientists have long thought that tectonic plates needed to dive beneath each other to create the chemical fingerprint we see in continents,” says geochemist Simon Turner, from Macquarie University in Australia.

Spray drying tech used in instant coffee applied to high-capacity battery production

The Korea Electrotechnology Research Institute (KERI) and the Korea Institute of Materials Science (KIMS) have jointly developed spray drying technology-based high-performance dry electrode manufacturing technology for the realization of high-capacity secondary batteries. The study is published in the Chemical Engineering Journal.

Secondary battery electrodes are made by mixing active materials that store electrical energy, conductive additives that help the flow of electricity, and binders which act as a kind of adhesive. There are two methods for mixing these materials: the wet process, which uses solvents, and the dry process, which mixes solid powders without solvents.

The dry process is considered more environmentally friendly than the wet process and has gained significant attention as a technology that can increase the energy density of secondary batteries. However, until now, there have been many limitations to achieving a uniform mixture of active materials, conductive additives, and binders in the dry process.

Green recipe: Engineered yeast boosts D-lactic acid production

Constructed strain achieves record-high yield from methanol, advancing ecofriendly biomanufacturing. Researchers from Osaka Metropolitan University have discovered the ideal genetic “recipe” to turn yeast into a tiny yet powerful eco-friendly factory that converts methanol into D-lactic acid, a key compound used in biodegradable plastics and pharmaceuticals.

This approach could help reduce reliance on petroleum-based processes and contribute to more sustainable chemical production.

Lactic acid is widely used in food, cosmetics, pharmaceuticals and bioplastics.

Novel membrane design mimics protein channels for efficient energy harvesting

A research team from the Qingdao Institute of Bioenergy and Bioprocess Technology of the Chinese Academy of Sciences, along with collaborators, has introduced a novel membrane design that mimics biological protein channels to enhance proton transport for efficient energy harvesting. The study was published in the Journal of the American Chemical Society.

Proton transport is fundamental to many biological processes and energy conversion methods. Inspired by the ClC-ec1 antiporter found in Escherichia coli, which facilitates the movement of chloride (Cl-) and , the researchers developed a hybrid membrane composed of covalent organic frameworks (COFs) integrated with aramid nanofibers (ANFs).

This ANF/COF composite forms a robust hydrogen-bonding network and features amide groups that selectively bind to Cl- ions, significantly lowering the for proton conduction.

RNA transformed into biosensor for detecting health-related chemicals

Scientists have transformed RNA, a biological molecule present in all living cells, into a biosensor that can detect tiny chemicals relevant to human health.

Research by Rutgers University-New Brunswick scientists centers on RNA, a nucleic acid that plays a crucial role in most cellular processes. Their work is expected to have applications in the surveillance of environmental chemicals and, ultimately, the diagnosis of critical diseases including neurological and cardiovascular diseases and cancer.

“Imagine that people will go to the hospital and give a sample of cells from their own bodies for regular check-ups,” said Enver Cagri Izgu, an assistant professor in the Department of Chemistry and Chemical Biology in the Rutgers School of Arts and Sciences and the corresponding author of the study.

/* */