Menu

Blog

Archive for the ‘chemistry’ category: Page 51

Jan 28, 2024

New satellite capable of measuring Earth precipitation from space

Posted by in categories: chemistry, climatology, satellites

Measuring the amount of precipitation that falls in a specific location is simple if that location has a device designed to accurately record and transmit precipitation data. In contrast, measuring the amount and type of precipitation that falls to Earth in every location is logistically quite difficult. Importantly, this information could provide a wealth of data for characterizing and predicting Earth’s water, energy and biogeochemical cycles.

Scientists from the China Meteorological Administration developed and launched a satellite created to measure Earth precipitation with radar while orbiting in space.

This is the first of two precipitation missions planned by the team to accurately measure the occurrence, type and intensity of any precipitation across the world, including over oceans and complex terrain. Specifically, the FY-3G satellite is designed to assess the 3-dimensional (3D) form of rainfall and other precipitation for weather systems at Earth’s middle and lower latitudes.

Jan 26, 2024

New simulation tool advances molecular modeling of biomolecular condensates

Posted by in categories: biotech/medical, chemistry, neuroscience

A University of Massachusetts Amherst team has made a major advance toward modeling and understanding how intrinsically disordered proteins (IDPs) undergo spontaneous phase separation, an important mechanism of subcellular organization that underlies numerous biological functions and human diseases.

IDPs play crucial roles in cancer, neurodegenerative disorders and infectious diseases. They make up about one-third of proteins that human bodies produce, and two-thirds of cancer-associated proteins contain large, disordered segments or domains. Identifying the hidden features crucial to the functioning and self-assembly of IDPs will help researchers understand what goes awry with these features when diseases occur.

In a paper published in the Journal of the American Chemical Society, senior author Jianhan Chen, professor of chemistry, describes a novel way to simulate separations mediated by IDPs, an important process that has been difficult to study and describe.

Jan 26, 2024

Combining two types of molecular boron nitride could create hybrid material for faster, more powerful electronics

Posted by in categories: chemistry, particle physics

In chemistry, structure is everything. Compounds with the same chemical formula can have different properties depending on the arrangement of the molecules they’re made of. And compounds with a different chemical formula but a similar molecular arrangement can have similar properties.

Graphene and a form of called hexagonal boron nitride fall into the latter group. Graphene is made up of . Boron nitride, BN, is composed of boron and nitrogen atoms. While their chemical formulas differ, they have a similar structure —so similar that many chemists call hexagonal boron nitride “white graphene.”

Carbon-based graphene has lots of useful properties. It’s thin but strong, and it conducts heat and electricity very well, making it ideal for use in electronics.

Jan 26, 2024

New Fuel Cell Harvests Energy from Microbes in Soil to Power Sensors, Communications

Posted by in categories: biological, chemistry, food, sustainability

A Northwestern University-led team of researchers has developed a new fuel cell that harvests energy from microbes living in dirt.

About the size of a standard paperback book, the completely soil-powered technology could fuel underground sensors used in precision agriculture and green infrastructure. This potentially could offer a sustainable, renewable alternative to batteries, which hold toxic, flammable chemicals that leach into the ground, are fraught with conflict-filled supply chains and contribute to the ever-growing problem of electronic waste.

To test the new fuel cell, the researchers used it to power sensors measuring soil moisture and detecting touch, a capability that could be valuable for tracking passing animals. To enable wireless communications, the researchers also equipped the soil-powered sensor with a tiny antenna to transmit data to a neighboring base station by reflecting existing radio frequency signals.

Jan 25, 2024

Scientists show that quantum infrared spectroscopy can achieve ultra-broadband spectroscopic measurements

Posted by in categories: chemistry, quantum physics

Our understanding of the world relies greatly on our knowledge of its constituent materials and their interactions. Recent advances in materials science technologies have ratcheted up our ability to identify chemical substances and expanded possible applications.

Jan 25, 2024

Chemists use blockchain to simulate more than 4 billion chemical reactions essential to origins of life

Posted by in categories: blockchains, chemistry, cryptocurrencies, finance, mathematics, supercomputing

Cryptocurrency is usually “mined” through the blockchain by asking a computer to perform a complicated mathematical problem in exchange for tokens of cryptocurrency. But in research appearing in the journal Chem a team of chemists has repurposed this process, asking computers to instead generate the largest network ever created of chemical reactions which may have given rise to prebiotic molecules on early Earth.

This work indicates that at least some primitive forms of metabolism might have emerged without the involvement of enzymes, and it shows the potential to use blockchain to solve problems outside the financial sector that would otherwise require the use of expensive, hard to access supercomputers.

“At this point we can say we exhaustively looked for every possible combination of chemical reactivity that scientists believe to had been operative on primitive Earth,” says senior author Bartosz A. Grzybowski of the Korea Institute for Basic Science and the Polish Academy of Sciences.

Jan 25, 2024

Nanoparticle spray reduces risk of airborne bacterial infections caused by air filtration systems

Posted by in categories: biotech/medical, chemistry, nanotechnology

A novel nanoparticle spray coating process has been shown to all but eliminate the growth of some of the world’s most dangerous bacteria in air filtration systems, significantly reducing the risk of airborne bacterial and viral infections.

That’s the principal finding of a study, led by researchers from IMDEA Materials Institute in collaboration with scientists from the Networking Biomedical Research Center in Respiratory Diseases (CIBERES) and Rey Juan Carlos University (URJC) in Madrid, Spain. The study was published in Materials Chemistry and Physics.

The study, “Control of microbial agents by functionalization of commercial air filters with metal oxide particles,” tested various spray coatings of silver (Ag2O), copper (CuO) and zinc (ZnO) oxides as low-cost antiviral and antibacterial filters when applied to commercially available air filtration systems.

Jan 25, 2024

Unlocking Bacterial Secrets: The Revolutionary Tool Decoding Gene Behavior

Posted by in categories: biotech/medical, chemistry

Researchers discovered a method to expedite the study of bacterial gene regulation, which could help fight antibiotic resistance by analyzing DNA replication’s impact on gene expression.

Bacterial infections cause millions of deaths each year, with the global threat made worse by the increasing resistance of the microbes to antibiotic treatments. This is due in part to the ability of bacteria to switch genes on and off as they sense environmental changes, including the presence of drugs. Such switching is accomplished through transcription, which converts the DNA in genes into its chemical cousin in mRNA, which guides the building of proteins that make up the microbe’s structure.

For this reason, understanding how mRNA production is regulated for each bacterial gene is central to efforts to counter resistance, but approaches used to study this regulation to date have been laborious. In a new study, scientists revealed a trick that may speed such efforts.

Jan 24, 2024

Study offers new insights into understanding and controlling tunneling dynamics in complex molecules

Posted by in categories: biological, chemistry, computing, quantum physics

Tunneling is one of most fundamental processes in quantum mechanics, where the wave packet could traverse a classically insurmountable energy barrier with a certain probability.

On the , effects play an important role in , such as accelerating enzyme catalysis, prompting spontaneous mutations in DNA and triggering olfactory signaling cascades.

Photoelectron tunneling is a key process in light-induced , charge and energy transfer and radiation emission. The size of optoelectronic chips and other devices has been close to the sub-nanometer atomic scale, and the quantum tunneling effects between different channels would be significantly enhanced.

Jan 24, 2024

Towards near-term quantum simulation of materials

Posted by in categories: chemistry, mapping, particle physics, quantum physics

The use of NISQ devices for useful quantum simulations of materials and chemistry is still mainly limited by the necessary circuit depth. Here, the authors propose to combine classically-generated effective Hamiltonians, hybrid fermion-to-qubit mapping and circuit optimisations to bring this requirement closer to experimental feasibility.

Page 51 of 329First4849505152535455Last