Menu

Blog

Archive for the ‘chemistry’ category: Page 50

Jan 25, 2024

Nanoparticle spray reduces risk of airborne bacterial infections caused by air filtration systems

Posted by in categories: biotech/medical, chemistry, nanotechnology

A novel nanoparticle spray coating process has been shown to all but eliminate the growth of some of the world’s most dangerous bacteria in air filtration systems, significantly reducing the risk of airborne bacterial and viral infections.

That’s the principal finding of a study, led by researchers from IMDEA Materials Institute in collaboration with scientists from the Networking Biomedical Research Center in Respiratory Diseases (CIBERES) and Rey Juan Carlos University (URJC) in Madrid, Spain. The study was published in Materials Chemistry and Physics.

The study, “Control of microbial agents by functionalization of commercial air filters with metal oxide particles,” tested various spray coatings of silver (Ag2O), copper (CuO) and zinc (ZnO) oxides as low-cost antiviral and antibacterial filters when applied to commercially available air filtration systems.

Jan 25, 2024

Unlocking Bacterial Secrets: The Revolutionary Tool Decoding Gene Behavior

Posted by in categories: biotech/medical, chemistry

Researchers discovered a method to expedite the study of bacterial gene regulation, which could help fight antibiotic resistance by analyzing DNA replication’s impact on gene expression.

Bacterial infections cause millions of deaths each year, with the global threat made worse by the increasing resistance of the microbes to antibiotic treatments. This is due in part to the ability of bacteria to switch genes on and off as they sense environmental changes, including the presence of drugs. Such switching is accomplished through transcription, which converts the DNA in genes into its chemical cousin in mRNA, which guides the building of proteins that make up the microbe’s structure.

For this reason, understanding how mRNA production is regulated for each bacterial gene is central to efforts to counter resistance, but approaches used to study this regulation to date have been laborious. In a new study, scientists revealed a trick that may speed such efforts.

Jan 24, 2024

Study offers new insights into understanding and controlling tunneling dynamics in complex molecules

Posted by in categories: biological, chemistry, computing, quantum physics

Tunneling is one of most fundamental processes in quantum mechanics, where the wave packet could traverse a classically insurmountable energy barrier with a certain probability.

On the , effects play an important role in , such as accelerating enzyme catalysis, prompting spontaneous mutations in DNA and triggering olfactory signaling cascades.

Photoelectron tunneling is a key process in light-induced , charge and energy transfer and radiation emission. The size of optoelectronic chips and other devices has been close to the sub-nanometer atomic scale, and the quantum tunneling effects between different channels would be significantly enhanced.

Jan 24, 2024

Towards near-term quantum simulation of materials

Posted by in categories: chemistry, mapping, particle physics, quantum physics

The use of NISQ devices for useful quantum simulations of materials and chemistry is still mainly limited by the necessary circuit depth. Here, the authors propose to combine classically-generated effective Hamiltonians, hybrid fermion-to-qubit mapping and circuit optimisations to bring this requirement closer to experimental feasibility.

Jan 24, 2024

Traces of ancient life reveal a 3.4-billion-year-old ecosystem

Posted by in category: chemistry

Chemical analysis of rocks found in South Africa shows that ancient microorganisms sustained themselves in a variety of ways, adding to evidence for an early origin of life on Earth.

By Michael Marshall

Jan 24, 2024

Cells’ electric fields keep nanoparticles at bay, scientists confirm

Posted by in categories: biotech/medical, chemistry, nanotechnology

The humble membranes that enclose our cells have a surprising superpower: They can push away nano-sized molecules that happen to approach them. A team including scientists at the National Institute of Standards and Technology (NIST) has figured out why, by using artificial membranes that mimic the behavior of natural ones. Their discovery could make a difference in how we design the many drug treatments that target our cells.

The team’s findings, which appear in the Journal of the American Chemical Society, confirm that the powerful electrical fields that cell membranes generate are largely responsible for repelling nanoscale particles from the surface of the cell.

This repulsion notably affects neutral, uncharged nanoparticles, in part because the smaller, charged the attracts crowd the membrane and push away the larger particles. Since many drug treatments are built around proteins and other nanoscale particles that target the membrane, the repulsion could play a role in the treatments’ effectiveness.

Jan 24, 2024

Mind In Vitro Platforms: Versatile, Scalable, Robust, and Open Solutions to Interfacing with Living Neurons

Posted by in categories: bioengineering, biotech/medical, chemistry, neuroscience

Advanced Science is a high-impact, interdisciplinary science journal covering materials science, physics, chemistry, medical and life sciences, and engineering.

Jan 24, 2024

The Periodic Table Just Got a Cheat Sheet: Discover the Ten Electron Rule

Posted by in categories: chemistry, computing, particle physics

The ‘ten electron’ rule provides guidance for the design of single-atom alloy catalysts for targeted chemical reactions.

A collaborative team across four universities have discovered a very simple rule to design single-atom alloy catalysts for chemical reactions. The ‘ten electron rule’ helps scientists identify promising catalysts for their experiments very rapidly. Instead of extensive trial and error experiments of computationally demanding computer simulations, catalysts’ composition can be proposed simply by looking at the periodic table.

Single-atom alloys are a class of catalysts made of two metals: a few atoms of reactive metal, called the dopant, are diluted in an inert metal (copper, silver, or gold). This recent technology is extremely efficient at speeding up chemical reactions but traditional models don’t explain how they work.

Jan 24, 2024

Microgravity Masters: Expedition 70 and Ax-3 Crews Working Together on Space Station

Posted by in categories: biotech/medical, chemistry, health, neuroscience

Eleven astronauts and cosmonauts from around the world are living and working together aboard the International Space Station (ISS) today, January 22. The four Axiom Mission 3 (Ax-3) private astronauts met the seven Expedition 70 crew members on Saturday beginning two weeks of dual operations.

The Ax-3 crew spent the weekend getting familiar with space station systems and emergency procedures before starting Monday with a full schedule of science and media activities. Ax-3 Commander Michael López-Alegría joined Pilot Walter Villadei and studied how microgravity affects the biochemistry of neurodegenerative diseases such as Alzheimer’s to improve health on Earth and in space. The duo later inserted samples into a fluorescence microscope for a study seeking to prevent and predict cancer diseases to protect crews in space and humans on Earth.

Jan 23, 2024

New Superconductor With Highest Critical Current for Its Type of Superconductor

Posted by in categories: chemistry, particle physics

A research team from Hefei Institutes of Physical Science (HFIPS), Chinese Academy of Sciences (CAS), discovered a new superconducting material called (InSe2)xNbSe2, which possesses a unique lattice structure. The superconducting transition temperature of this material reaches 11.6 K, making it the transition metal sulfide superconductor with the highest transition temperature under ambient pressure.

TMD materials have received lots of attention due to the numerous applications in the fields of catalysis, energy storage, and integrated circuit. However, the relatively low superconducting transition temperatures of TMD superconductors have limited their potential use.

In this study, scientists successfully fabricated a new superconducting material with the chemical formula (InSe2)xNbSe2. Unlike the conventional conditions where isolated atoms are inserted into the van de Waals gaps of low dimensional materials, in (InSe2)xNbSe2 the intercalated indium atoms were found to form InSe2-bonded chains.

Page 50 of 327First4748495051525354Last