Menu

Blog

Archive for the ‘chemistry’ category: Page 35

Mar 19, 2024

Scientists Develop Groundbreaking Sensor That Can Wirelessly Detect Chemical Warfare Agents

Posted by in categories: chemistry, energy, military

Researchers have developed a revolutionary sensor capable of detecting chemical warfare agents without wires, representing a major advancement in technology for public safety. This innovative device, capable of identifying substances like dimethyl methylphosphonate (DMMP), offers a new level of efficiency and reliability in monitoring and responding to chemical threats, without the need for direct power sources or physical connections.

The urgent need for advanced detection of chemical warfare agents (CWAs) to ensure global security has led to the development of a novel gas sensor. This sensor is distinguished by its rapid response, high sensitivity, and compact size, crucial for the early detection of CWAs. Accurate detection and monitoring of CWAs are vital for effective defense operations, both military and civilian. Due to the hazardous nature of CWAs, research is typically limited to authorized laboratories using simulants that mimic CWAs’ chemical structure without their toxic effects.

Mar 19, 2024

NIO Switches Its Standard 75-kWh Battery From Hybrid-Cell LFP/NCM To All-LFP

Posted by in categories: chemistry, transportation

NIO’s entry-level Standard battery pack option will soon get an upgrade with the new 2024 model year cars.

According to the company (via CnEVPost), the 75-kilowatt-hour dual-chemistry (LFP/NCM) Standard battery will be replaced by a new 75-kWh battery with only LFP battery cells. This should simplify the pack and reduce costs. LFP’s battery cell chemistry is known as one of the least expensive per kWh.

Mar 19, 2024

New Phospholipid Discovery Rewrites the Story of the Origin of Life

Posted by in categories: chemistry, evolution

Approximately 4 billion years ago, Earth was in the process of creating conditions suitable for life. Origin-of-life scientists often wonder if the type of chemistry found on the early Earth was similar to what life requires today. They know that spherical collections of fats, called protocells, were the precursor to cells during this emergence of life. But how did simple protocells first arise and diversify to eventually lead to life on Earth?

Now, Scripps Research scientists have discovered one plausible pathway for how protocells may have first formed and chemically progressed to allow for a diversity of functions.

Continue reading “New Phospholipid Discovery Rewrites the Story of the Origin of Life” »

Mar 19, 2024

Cage escape governs photoredox reaction rates and quantum yields

Posted by in categories: chemistry, quantum physics

The 3 MLCT-excited [Ru(bpz)3]2+ and the spin-flip excited states of [Cr(dqp)2]3+ underwent photoinduced electron-transfer reactions with 12 amine-based electron donors similarly well, but provided cage escape quantum yields differing by up to an order of magnitude. In three exemplary benchmark photoredox reactions performed with different electron donors, the differences in the reaction rates observed when using either [Ru(bpz)3]2+ or [Cr(dqp)2]3+ as photocatalyst correlated with the magnitude of the cage escape quantum yields. These correlations indicate that the cage escape quantum yields play a decisive role in the reaction rates and quantum efficiencies of the photoredox reactions, and also illustrate that luminescence quenching experiments are insufficient for obtaining quantitative insights into photoredox reactivity.

From a purely physical chemistry perspective, these findings are not a priori surprising as the rate of photoproduct formation in an overall reaction comprising several consecutive elementary steps can be expressed as the product of the quantum yields of the individual elementary steps45,46. A recent report on solvent-dependent cage escape and photoredox studies suggested that the correlations between photoredox product formation rates and cage escape quantum yields might be observable11, but we are unaware of previous reports that have been able to demonstrate that the rate of product formation in several batch-type photoreactions correlates with the cage escape quantum yields determined from laser experiments. Synthetic photochemistry and mechanistic investigations are often conducted under substantially different conditions, which can lead to controversial discrepancies47,48,49, whereas here their mutual agreement seems remarkable, particularly given the complexity of the overall reactions.

The available data and the presented analysis suggest that the different cage escape behaviours of [Ru(bpz)3]2+ and [Cr(dqp)2]3+ originate in the fact that for any given electron donor, in-cage reverse electron transfer is ~0.3 eV more exergonic for the RuII complex than for the CrIII complex. Thermal reverse electron transfer between caged radical pairs therefore occurs more deeply in the Marcus inverted region with [Ru(bpz)3]2+ than with [Cr(dqp)2]3+, decelerating in-cage charge recombination in the RuII complex and increasing the cage escape quantum yields compared with the CrIII complex (Fig. 3D).

Mar 19, 2024

How Fear Unfolds inside Our Brains

Posted by in categories: biotech/medical, chemistry, neuroscience

The stress-induced mechanisms that cause our brain to produce feelings of fear in the absence of threats have been mostly a mystery. Now, neurobiologists at the University of California San Diego have identified the changes in brain biochemistry and mapped the neural circuitry that cause such a generalized fear experience. Their research, published in the journal Science on March 15, 2024, provides new insights into how fear responses could be prevented.

In their report, former UC San Diego Assistant Project Scientist Hui-quan Li, (now a senior scientist at Neurocrine Biosciences), Atkinson Family Distinguished Professor Nick Spitzer of the School of Biological Sciences and their colleagues describe the research behind their discovery of the neurotransmitters — the chemical messengers that allow the brain’s neurons to communicate with one another — at the root of stress-induced generalized fear.

Studying the brains of mice in an area known as the dorsal raphe (located in the brainstem), the researchers found that acute stress induced a switch in the chemical signals in the neurons, flipping from excitatory “glutamate” to inhibitory “GABA” neurotransmitters, which led to generalized fear responses.

Mar 18, 2024

Mimicking exercise with a pill

Posted by in categories: biotech/medical, chemistry, health, neuroscience

NEW ORLEANS, March 18, 2024 — Doctors have long prescribed exercise to improve and protect health. In the future, a pill may offer some of the same benefits as exercise. Now, researchers report on new compounds that appear capable of mimicking the physical boost of working out — at least within rodent cells. This discovery could lead to a new way to treat muscle atrophy and other medical conditions in people, including heart failure and neurodegenerative disease.

The researchers will present their results today at the spring meeting of the American Chemical Society (ACS). ACS Spring 2024 is a hybrid meeting being held virtually and in person March 17–21; it features nearly 12,000 presentations on a range of science topics.

Continue reading “Mimicking exercise with a pill” »

Mar 18, 2024

MIT Unveils the Dance of Protons: Pioneering Energy’s New Era

Posted by in categories: chemistry, energy

New insights into how proton-coupled electron transfers occur at an electrode could help researchers design more efficient fuel cells and electrolyzers.

A key chemical reaction — in which the movement of protons between the surface of an electrode and an electrolyte drives an electric current — is a critical step in many energy technologies, including fuel cells and the electrolyzers used to produce hydrogen gas.

For the first time, MIT chemists have mapped out in detail how these proton-coupled electron transfers happen at an electrode surface. Their results could help researchers design more efficient fuel cells, batteries, or other energy technologies.

Mar 17, 2024

Measurement of non-monotonic Casimir forces between silicon nanostructures

Posted by in categories: chemistry, energy, nanotechnology, physics

Like Brian Greer has said the casimir technologies can power anything and create a free society a free utopia without the need for using any chemicals and it has been known since the 1950s in the physics community.


Previous demonstrations of the elusive Casimir force between interfaces exhibit monotonic dependence on surface displacement. Now a non-monotonic dependence of the force has been shown experimentally by exploting nanostructured surfaces.

Mar 17, 2024

Quantum Leap in Material Science: Researchers Unveil AI-Powered Atomic Fabrication Technique

Posted by in categories: chemistry, particle physics, quantum physics, robotics/AI, science

Researchers at the National University of Singapore (NUS) have developed an innovative method for creating carbon-based quantum materials atom by atom. This method combines the use of scanning probe microscopy with advanced deep neural networks. The achievement underlines the capabilities of artificial intelligence (AI) in manipulating materials at the sub-angstrom level, offering significant advantages for basic science and potential future uses.

Open-shell magnetic nanographenes represent a technologically appealing class of new carbon-based quantum materials, which host robust π-spin centers and non-trivial collective quantum magnetism. These properties are crucial for developing high-speed electronic devices at the molecular level and creating quantum bits, the building blocks of quantum computers.

Continue reading “Quantum Leap in Material Science: Researchers Unveil AI-Powered Atomic Fabrication Technique” »

Mar 17, 2024

Extreme treatment for alcoholism slashes drinking by 90% in monkeys

Posted by in categories: biotech/medical, chemistry, neuroscience

According to the CDC, more than 140,000 Americans are dying each year from alcohol-related causes, and the rate of deaths has been rising for years, especially during the pandemic.

The idea: For occasional drinkers, alcohol causes the brain to release more dopamine, a chemical that makes you feel good. Chronic alcohol use, however, causes the brain to produce, and process, less dopamine, and this persistent dopamine deficit has been linked to alcohol relapse.

There is currently no way to reverse the changes in the brain brought about by AUD, but a team of US researchers suspected that an in-development gene therapy for Parkinson’s disease might work as a dopamine-replenishing treatment for alcoholism, too.

Page 35 of 327First3233343536373839Last