Menu

Blog

Archive for the ‘chemistry’ category: Page 29

Apr 13, 2024

Are Fundamental Constants Fundamental? | Peter Atkins and Jim Baggott

Posted by in categories: business, chemistry, education, particle physics, quantum physics

Peter Atkins discusses the ideas in his book ‘Conjuring the Universe’ with fellow science writer Jim Baggott. They discuss how fundamental the various constants of the universe truly are.

https://global.oup.com/academic/produ

Continue reading “Are Fundamental Constants Fundamental? | Peter Atkins and Jim Baggott” »

Apr 13, 2024

Scientists use novel technique to create new energy-efficient microelectronic device

Posted by in categories: chemistry, neuroscience

“The subvolt regime, which is where this material operates, is of enormous interest to researchers looking to make circuits that act similarly to the human brain, which also operates with great energy efficiency.” — Argonne materials scientist Wei Chen “Redox” refers to a chemical reaction that…


As the integrated circuits that power our electronic devices get more powerful, they are also getting smaller. This trend of microelectronics has only accelerated in recent years as scientists try to fit increasingly more semiconducting components on a chip.

Microelectronics face a key challenge because of their small size. To avoid overheating, microelectronics need to consume only a fraction of the electricity of conventional electronics while still operating at peak performance.

Continue reading “Scientists use novel technique to create new energy-efficient microelectronic device” »

Apr 11, 2024

Novel fabrication technique takes transition metal telluride nanosheets from lab to mass production

Posted by in categories: chemistry, particle physics

But a team of researchers has recently developed a novel —the use of chemical solutions to peel off thin layers from their parent compounds, creating atomically thin sheets—that looks set to deliver on the ultra-thin substance’s promise finally.

The researchers describe their fabrication technique in a study published in Nature.

In the world of ultra-thin or ‘two-dimensional’ materials—those containing just a single layer of atoms—transition metal telluride (TMT) nanosheets have, in recent years, caused great excitement among chemists and materials scientists for their particularly unusual properties.

Apr 10, 2024

Revolutionizing IoT Power: The Pyroelectrochemical Cell Solution

Posted by in categories: chemistry, energy, food, internet, physics

Can you wirelessly power wireless devices, thus improving and advancing the technology known an “Internet of Things” (IoT)? This is what a recent study published in Energy & Environmental Science hopes to address as a team of researchers from the University of Utah investigated how pyroelectrochemical cell (PECs) could be used to self-charge IoT devices through changes in immediate surrounding temperature, also known as ambient temperature. This study holds the potential to help a myriad of industries, including agriculture and machinery, by allowing IoT devices to charge without the need for electrical outlets.

“We’re talking very low levels of energy harvesting, but the ability to have sensors that can be distributed and not need to be recharged in the field is the main advantage,” said Dr. Roseanne Warren, who is an associate professor in the Mechanical Engineering Department at the University of Utah and a co-author on the study. “We explored the basic physics of it and found that it could generate a charge with an increase in temperature or a decrease in temperature.”

Apr 10, 2024

Certain household chemicals could pose a threat to brain health, research suggests

Posted by in categories: biotech/medical, chemistry, health, neuroscience

Cell and animal tests suggest two classes of common chemicals might play a role in neurological disease.

Apr 10, 2024

Masked acid chlorides for proximity labelling of RNA

Posted by in categories: chemistry, mapping

A non-radical proximity labelling platform — BAP-seq — is presented that uses subcellular-localized BS2 esterase to convert unreactive enol-based probes into highly reactive acid chlorides in situ to label nearby RNAs. When paired with click-handle-mediated enrichment and sequencing, this chemistry enables high-resolution spatial mapping of RNAs across subcellular compartments.

Apr 10, 2024

Black Hole Effects on Quantum Information Discovered in Everyday Chemistry

Posted by in categories: chemistry, cosmology, mathematics, particle physics, quantum physics

Nothing makes a mess of quantum physics quite like those space-warping, matter-gulping abominations known as black holes. If you want to turn Schrodinger’s eggs into an information omelet, just find an event horizon and let ‘em drop.

According to theoretical physicists and chemists from Rice University and the University of Illinois Urbana-Champaign in the US, basic chemistry is capable of scrambling quantum information almost as effectively.

The team used a mathematical tool developed more than half a century ago to bridge a gap between known semiclassical physics and quantum effects in superconductivity. They found the delicate quantum states of reacting particles become scrambled with surprising speed and efficiency that comes close to matching the might of a black hole.

Apr 10, 2024

First-of-its-kind integrated dataset enables genes-to-ecosystems research

Posted by in categories: bioengineering, biotech/medical, chemistry, genetics

A first-ever dataset bridging molecular information about the poplar tree microbiome to ecosystem-level processes has been released by a team of Department of Energy scientists led by Oak Ridge National Laboratory. The project aims to inform research regarding how natural systems function, their vulnerability to a changing climate, and ultimately how plants might be engineered for better performance as sources of bioenergy and natural carbon storage.

The data, described in Nature Publishing Group’s Scientific Data, provides in-depth information on 27 genetically distinct variants, or genotypes, of Populus trichocarpa, a poplar tree of interest as a bioenergy crop. The genotypes are among those that the ORNL-led Center for Bioenergy Innovation previously included in a genome-wide association study linking genetic variations to the trees’ physical traits. ORNL researchers collected leaf, soil and root samples from poplar fields in two regions of Oregon — one in a wetter area subject to flooding and the other drier and susceptible to drought.

Details in the newly integrated dataset range from the trees’ genetic makeup and gene expression to the chemistry of the soil environment, analysis of the microbes that live on and around the trees and compounds the plants and microbes produce.

Apr 8, 2024

Improving sodium ion batteries with mechanically robust nanocellular graphene

Posted by in categories: chemistry, particle physics

Ever since its discovery in 2004, graphene has been revolutionizing the field of materials science and beyond. Graphene comprises two-dimensional sheets of carbon atoms, bonded into a thin hexagonal shape with a thickness of one atom layer. This gives it remarkable physical and chemical properties.

Apr 8, 2024

Cleaning up Environmental Contaminants with Quantum Dot Technology

Posted by in categories: biotech/medical, chemistry, quantum physics, solar power

The 2023 Nobel Prize in Chemistry was focused on quantum dots – objects so tiny, they’re controlled by the strange and complex rules of quantum physics. Many quantum dots used in electronics are made from toxic substances, but their nontoxic counterparts are now being developed and explored for uses in medicine and in the environment. One team of researchers is focusing on carbon-and sulfur-based quantum dots, using them to create safer invisible inks and to help decontaminate water supplies.

The researchers will present their results today at the spring meeting of the American Chemical Society (ACS).

Quantum dots are synthetic nanometer-scale semiconductor crystals that emit light. They are used in applications such as electronics displays and solar cells. “Many conventional quantum dots are toxic, because they’re derived from heavy metals,” explains Md Palashuddin Sk, an assistant professor of chemistry at Aligarh Muslim University in India. “So, we’re working on nonmetallic quantum dots because they’re environmentally friendly and can be used in biological applications.”

Page 29 of 327First2627282930313233Last