Menu

Blog

Archive for the ‘chemistry’ category: Page 256

Dec 9, 2020

New tools ‘turn on’ quantum gases of ultracold molecules

Posted by in categories: chemistry, computing, quantum physics

JILA researchers have developed tools to “turn on” quantum gases of ultracold molecules, gaining control of long-distance molecular interactions for potential applications such as encoding data for quantum computing and simulations.

The new scheme for nudging a down to its lowest energy state, called quantum degeneracy, while suppressing that break up finally makes it possible to explore exotic quantum states in which all the molecules interact with one another.

The research is described in the Dec. 10 issue of Nature. JILA is a joint institute of the National Institute of Standards and Technology (NIST) and the University of Colorado Boulder.

Dec 9, 2020

Researchers capture roaming molecular fragments in real time

Posted by in categories: chemistry, physics

The observation of a chemical reaction at the molecular level in real time is a central theme in experimental chemical physics. An international research team has captured roaming molecular fragments for the first time. The work, under the supervision of Heide Ibrahim, research associate at the Institut national de la recherche scientifique (INRS), was published in the journal Science.

The research group of the Énergie Matériaux Télécommunications Research Centre of INRS, with support of Professor François Légaré, has used the Advanced Laser Light Source (ALLS). They have succeeded in shooting the first molecular film of “roamers”—hydrogen fragments, in this case—that orbit around HCO fragments) during a chemical reaction by studying the photo-dissociation of formaldehyde, H2CO.

Dec 8, 2020

Researchers develop unique process for producing light-matter mixture

Posted by in categories: chemistry, nanotechnology, quantum physics

In groundbreaking new research, an international team of researchers led by the University of Minnesota Twin Cities has developed a unique process for producing a quantum state that is part light and part matter.

The discovery provides fundamental new insights for more efficiently developing the next generation of quantum-based optical and electronic devices. The research could also have an impact on increasing efficiency of nanoscale chemical reactions.

The research is published in Nature Photonics.

Dec 8, 2020

Research group has made a defect-resistant superalloy that can be 3D-printed

Posted by in categories: chemistry, economics, engineering, nuclear energy, particle physics, space

In recent years, it has become possible to use laser beams and electron beams to “print” engineering objects with complex shapes that could not be achieved by conventional manufacturing. The additive manufacturing (AM) process, or 3D printing, for metallic materials involves melting and fusing fine-scale powder particles—each about 10 times finer than a grain of beach sand—in sub-millimeter-scale “pools” created by focusing a laser or electron beam on the material.

“The highly focused beams provide exquisite control, enabling ‘tuning’ of properties in critical locations of the printed object,” said Tresa Pollock, a professor of materials and associate dean of the College of Engineering at UC Santa Barbara. “Unfortunately, many advanced metallic alloys used in extreme heat-intensive and chemically corrosive environments encountered in energy, space and nuclear applications are not compatible with the AM process.”

The challenge of discovering new AM-compatible materials was irresistible for Pollock, a world-renowned scientist who conducts research on advanced metallic materials and coatings. “This was interesting,” she said, “because a suite of highly compatible alloys could transform the production of having high economic value—i.e. materials that are expensive because their constituents are relatively rare within the earth’s crust—by enabling the manufacture of geometrically complex designs with minimal material waste.

Dec 8, 2020

The Hunt for New Batteries — with Serena Corr

Posted by in categories: biological, chemistry, engineering, nanotechnology, sustainability, transportation

Serena Corr looks at the science behind batteries, discusses why we are hunting for new ones and investigates what tools we use to pave this pathway to discovery.
Watch the Q&A: https://youtu.be/lZjqiR0czLo.

The hunt is on for the next generation of batteries that will power our electric vehicles and help our transition to a renewables-led future. Serena shows how researchers at the Faraday Institution are developing new chemistries and manufacturing processes to deliver safer, cheaper, and longer-lasting batteries and provide higher power or energy densities for electric vehicles.

Continue reading “The Hunt for New Batteries — with Serena Corr” »

Dec 8, 2020

Dr Daniel Monti — CEO & Founding Director, Marcus Institute of Integrative Health — Jefferson Health

Posted by in categories: biotech/medical, chemistry, education, health, neuroscience, sex

Exciting momentum!! — Home Depot Founder, Bernie Marcus (age 91), and the Adolph Coors Foundation (beer family), putting millions of $$$ into comprehensive integrative health and wellness — Good to see the trend!!


The Marcus Institute of Integrative Health was established in Philadelphia in 2017 by Thomas Jefferson University and Jefferson Health, and a multi-million $$$ grant from the Marcus Foundation (headed by it’s Chairman, Bernie Marcus, Co-Founder of The Home Depot) to expand the research, education and clinical care profile of Jefferson’s integrative medicine program, and to set the international standard of excellence in evidence-based, patient-centered integrative care.

Continue reading “Dr Daniel Monti — CEO & Founding Director, Marcus Institute of Integrative Health — Jefferson Health” »

Dec 7, 2020

Harnessing Quantum Properties to Create Single-Molecule Devices

Posted by in categories: chemistry, computing, nanotechnology, quantum physics

Columbia team discovers 6-nanometer-long single-molecule circuit with enormous on/off ratio due to quantum interference; finding could enable faster, smaller, and more energy-efficient devices.

Researchers, led by Columbia Engineering Professor Latha Venkataraman, report today that they have discovered a new chemical design principle for exploiting destructive quantum interference. They used their approach to create a six-nanometer single-molecule switch where the on-state current is more than 10,000 times greater than the off-state current–the largest change in current achieved for a single-molecule circuit to date.

This new switch relies on a type of quantum interference that has not, up to now, been explored. The researchers used long molecules with a special central unit to enhance destructive quantum interference between different electronic energy levels. They demonstrated that their approach can be used to produce very stable and reproducible single-molecule switches at room temperature that can carry currents exceeding 0.1 microamps in the on-state. The length of the switch is similar to the size of the smallest computer chips currently on the market and its properties approach those of commercial switches. The study is published today in Nature Nanotechnology.

Dec 7, 2020

Paper-based electrochemical sensor can detect COVID-19 in less than five minutes

Posted by in categories: bioengineering, biotech/medical, chemistry

As the COVID-19 pandemic continues to spread across the world, testing remains a key strategy for tracking and containing the virus. Bioengineering graduate student, Maha Alafeef, has co-developed a rapid, ultrasensitive test using a paper-based electrochemical sensor that can detect the presence of the virus in less than five minutes. The team led by professor Dipanjan Pan reported their findings in ACS Nano.

“Currently, we are experiencing a once-in-a-century life-changing event,” said Alafeef. “We are responding to this global need from a holistic approach by developing multidisciplinary tools for early detection and diagnosis and treatment for SARS-CoV-2.”

There are two broad categories of COVID-19 tests on the market. The first category uses reverse transcriptase real-time polymerase chain reaction (RT-PCR) and nucleic acid hybridization strategies to identify viral RNA. Current FDA-approved diagnostic tests use this technique. Some drawbacks include the amount of time it takes to complete the test, the need for specialized personnel and the availability of equipment and reagents.

Dec 7, 2020

US Space Force and NASA Looking to Privatize Nuclear Spacecraft Production

Posted by in categories: chemistry, Elon Musk, nuclear energy, space travel

LOS ANGELES, CA / ACCESSWIRE / December 7, 2020 / US Nuclear (OTCQB: UCLE) is the prime contractor to build MIFTI’s fusion generators, which could be used in the relatively near future to power the propulsion systems for space travel and provide plentiful, low-cost, clean energy for the earth and other planetary bases once our astronauts get to their destination, be it the moon, Mars, Saturn or beyond. Chemical powered rockets opened the door to space travel, but are still far too slow and heavy even to travel to distant planets within our solar system, let alone travel to other stars. Accordingly, NASA is now looking to nuclear powered rockets that can propel a space vessel at speeds close to the speed of light and thermonuclear power plants on the moon and Mars, as these are the next steps towards space exploration and colonization.

The US Energy Secretary, Dan Brouillette, recently said, “If we want to engage in outer space, or deep space as we call it, we have to rely upon nuclear fuels to get us there… that will allow us to get to Mars and back on ‘one tank of gas’.” This is made possible by the large energy density ratio which makes the fuel weight for chemical fuels ten million times higher than the fuel that powers the fusion drive. NASA is now relying on private companies to build spaceships: big companies like Boeing, but more and more on high-tech startups such as Elon Musk’s Space-X, Jeff Bezos’s Blue Origin, and Richard Branson’s Virgin Atlantic.

While nuclear fission has been considered as a basis for the next generation of rocket engines, the fuel used for fission is enriched uranium, which is scarce, costly, unstable, and hazardous. On the other hand, thermonuclear fusion uses a clean, low-cost isotope of hydrogen from ordinary seawater, and one gallon of this seawater extraction yields about the same amount of energy as 300 gallons of gasoline.

Dec 6, 2020

Unlocking the secrets of chemical bonding with machine learning

Posted by in categories: chemistry, robotics/AI

A new machine learning approach offers important insights into catalysis, a fundamental process that makes it possible to reduce the emission of toxic exhaust gases or produce essential materials like fabric.

In a report published in Nature Communications, Hongliang Xin, associate professor of chemical engineering at Virginia Tech, and his team of researchers developed a Bayesian learning model of chemisorption, or Bayeschem for short, aiming to use to unlock the nature of chemical bonding at surfaces.

“It all comes down to how catalysts bind with molecules,” said Xin. “The interaction has to be strong enough to break some at reasonably low temperatures, but not too strong that catalysts would be poisoned by reaction intermediates. This rule is known as the Sabatier principle in catalysis.”