Menu

Blog

Archive for the ‘chemistry’ category: Page 243

Apr 6, 2021

Researchers develop surgical glue that seals wounds in seconds

Posted by in categories: biotech/medical, chemistry, engineering

Circa 2017


When surgeons complete a successful lung operation, everyone should breathe a sigh of relief. But real relief may not come until weeks or even months later, when doctors remove the patient’s lingering sutures or staples. And that’s assuming there were no leakages, which can send a patient right back to the hospital.

Nasim Annabi, assistant professor of chemical engineering, has a better solution: a new type of surgical glue that could replace the need for staples and sutures altogether. Annabi is leading the research, which she and her colleagues from the University of Sydney and Harvard Medical School described in a paper published Wednesday in Science Translational Medicine.

Continue reading “Researchers develop surgical glue that seals wounds in seconds” »

Apr 6, 2021

‘Impossible’ EmDrive Actually Is Impossible, Comprehensive Test Shows

Posted by in categories: chemistry, cosmology, quantum physics, space travel

Humanity has come a long way in understanding the universe. We’ve got a physical framework that mostly matches our observations, and new technologies have allowed us to analyze the Big Bang and take photos of black holes. But the hypothetical EmDrive rocket engine threatened to upend what we knew about physics… if it worked. After the latest round of testing, we can say with a high degree of certainty that it doesn’t.

If you have memories from the 90s, you probably remember the interest in cold fusion, a supposed chemical process that could produce energy from fusion at room temperature instead of millions of degrees (pick your favorite scale, the numbers are all huge). The EmDrive is basically cold fusion for the 21st century. First proposed in 2001, the EmDrive uses an asymmetrical resonator cavity inside which electromagnetic energy can bounce around. There’s no exhaust, but proponents claim the EmDrive generates thrust.

The idea behind the EmDrive is that the tapered shape of the cavity would reflect radiation in such a way that there was a larger net force exerted on the resonator at one end. Thus, an object could use this “engine” for hyper-efficient propulsion. That would be a direct violation of the conservation of momentum. Interest in the EmDrive was scattered until 2016 when NASA’s Eagelworks lab built a prototype and tested it. According to the team, they detected a small but measurable net force, and that got people interested.

Apr 6, 2021

Brain Cells Decide on Their Own When to Release Pleasure Hormone

Posted by in categories: biotech/medical, chemistry, neuroscience

Summary: Dopamine neurons largely rely on their own discharge to determine release rates of the hormone, researchers report.

Source: NYU Langone.

In addition to smoothing out wrinkles, researchers have found that the drug Botox can reveal the inner workings of the brain. A new study used it to show that feedback from individual nerve cells controls the release of dopamine, a chemical messenger involved in motivation, memory, and movement.

Apr 3, 2021

Century-old problem solved with first-ever 3D atomic imaging of an amorphous solid

Posted by in categories: biotech/medical, chemistry, nanotechnology

Glass, rubber and plastics all belong to a class of matter called amorphous solids. And in spite of how common they are in our everyday lives, amorphous solids have long posed a challenge to scientists.

Since the 1910s, scientists have been able to map in 3D the atomic structures of crystals, the other major class of solids, which has led to myriad advances in physics, chemistry, biology, , geology, nanoscience, drug discovery and more. But because aren’t assembled in rigid, repetitive atomic structures like crystals are, they have defied researchers’ ability to determine their with the same level of precision.

Until now, that is.

Apr 2, 2021

Disrupted biochemical pathway in the brain linked to bipolar disorder

Posted by in categories: biotech/medical, chemistry, health, neuroscience

Bipolar disorder affects millions of Americans, causing dramatic swings in mood and, in some people, additional effects such as memory problems.

While bipolar disorder is linked to many genes, each one making small contributions to the disease, scientists don’t know just how those genes ultimately give rise to the disorder’s effects.

However, in new research, scientists at the University of Wisconsin-Madison have found for the first time that disruptions to a particular protein called Akt can lead to the brain changes characteristic of bipolar disorder. The results offer a foundation for research into treating the often-overlooked cognitive impairments of bipolar disorder, such as memory loss, and add to a growing understanding of how the biochemistry of the brain affects health and disease.

Apr 1, 2021

State’s Largest Business Lobby Sues Environmental Regulators Over PFAS Sampling Of Wastewater

Posted by in categories: business, chemistry

The companies attempting to avoid transparency.

Jerry Lehnert.

· 1tSpohntsnorted ·

Continue reading “State’s Largest Business Lobby Sues Environmental Regulators Over PFAS Sampling Of Wastewater” »

Mar 31, 2021

Artificial life made in lab can grow and divide like natural bacteria

Posted by in categories: biotech/medical, chemistry

SYNTHETIC cells made by combining components of Mycoplasma bacteria with a chemically synthesised genome can grow and divide into cells of uniform shape and size, just like most natural bacterial cells.

In 2016, researchers led by Craig Venter at the J. Craig Venter Institute in San Diego, California, announced that they had created synthetic “minimal” cells. The genome in each cell contained just 473 key genes thought to be essential for life.

Mar 31, 2021

Synthetic organism undergoes cell division in breakthrough study

Posted by in categories: biotech/medical, chemistry

For the first time, a team of scientists has created a synthetic single-celled organism that can divide and grow like a regular living cell. This breakthrough could lead to designer cells that can produce useful chemicals on demand or treat disease from inside the body.

This new study, by scientists from the J. Craig Venter Institute (JCVI), the National Institute of Standards and Technology (NIST) and MIT, builds on over a decade’s work in creating synthetic lifeforms. In 2010 a JCVI team created the world’s first cell with a synthetic genome, which they dubbed JCVI-syn1.0.

In 2016, the researchers followed that up with JCVI-syn3.0, a version where the goal was to make the organism as simple as possible. With only 473 genes, it was the simplest living cell ever known – by comparison, an E. coli bacterium has well over 4000 genes. But perhaps it was too simple, because the cells weren’t all that effective at dividing. Rather than uniform shapes and sizes, some of them would form filaments and others wouldn’t fully separate.

Mar 30, 2021

‘Discovery Accelerator,’ a new Cleveland Clinic-IBM partnership, will use quantum computer, artificial intelligence to speed up medical innovations

Posted by in categories: chemistry, health, quantum physics, robotics/AI

CLEVELAND, Ohio — The Cleveland Clinic and IBM have entered a 10-year partnership that will install a quantum computer — which can handle large amounts of data at lightning speeds — at the Clinic next year to speed up medical innovations.

The Discovery Accelerator, a joint Clinic-IBM center, will feature artificial intelligence, hybrid cloud data storage and quantum computing technologies. A hybrid cloud is a data storage technology that allows for faster storage and analysis of large amounts of data.

The partnership will allow Clinic researchers to use the advanced tech in its new Global Center for Pathogen Research and Human Health for research into genomics, population health, clinical applications, and chemical and drug discovery.

Mar 29, 2021

After more than 2 decades of searching, scientists finger cause of mass eagle deaths

Posted by in categories: biotech/medical, chemistry, neuroscience

More than 25 years ago, biologists in Arkansas began to report dozens of bald eagles paralyzed, convulsing, or dead. Their brains were pocked with lesions never seen before in eagles. The disease was soon found in other birds across the southeastern United States. Eventually, researchers linked the deaths to a new species of cyanobacteria growing on an invasive aquatic weed that is spreading across the country. The problem persists, with the disease detected regularly in a few birds, yet the culprit’s chemical weapon has remained unknown.

Today in Science, a team identifies a novel neurotoxin produced by the cyanobacteria and shows that it harms not just birds, but fish and invertebrates, too. “This research is a very, very impressive piece of scientific detective work,” says microbiologist Susanna Wood of the Cawthron Institute. An unusual feature of the toxic molecule is the presence of bromine, which is scarce in lakes and rarely found in cyanobacteria. One possible explanation: the cyanobacteria produce the toxin from a bromide-containing herbicide that lake managers use to control the weed.

The discovery highlights the threat of toxic cyanobacteria that grow in sediment and on plants, Wood says, where routine water quality monitoring might miss them. The finding also equips researchers to survey lakes, wildlife, and other cyanobacteria for the new toxin. “It will be very useful,” says Judy Westrick, a chemist who studies cyanobacterial toxins at Wayne State University and was not involved in the new research. “I started jumping because I got so excited.”