Menu

Blog

Archive for the ‘chemistry’ category: Page 182

Jun 23, 2022

Biochemistry Researchers Repair and Regenerate Heart Muscle Cells

Posted by in categories: biotech/medical, chemistry, life extension, mathematics

Researchers at the University of Houston are reporting a first-of-its-kind technology that not only repairs heart muscle cells in mice but also regenerates them following a heart attack, or myocardial infarction as its medically known.

Published in The Journal of Cardiovascular Aging 0, the groundbreaking finding has the potential to become a powerful clinical strategy for treating heart disease in humans, according to Robert Schwartz, Hugh Roy and Lillie Cranz Cullen Distinguished Professor of biology and biochemistry at the UH College of Natural Sciences and Mathematics.

The new technology developed by the team of researchers uses synthetic messenger ribonucleic acid (mRNA) to deliver mutated transcription factors — proteins that control the conversion of DNA into RNA — to mouse hearts.

Jun 22, 2022

Process to customize molecules does double duty

Posted by in categories: biotech/medical, chemistry

Inspired by your liver and activated by light, a chemical process developed in labs at Rice University and in China shows promise for drug design and the development of unique materials.

Researchers led by Rice chemist Julian West and Xi-Sheng Wang at the University of Science and Technology of China, Hefei, are reporting their successful catalytic process to simultaneously add two distinct functional groups to single alkenes, drawn from petrochemicals that contain at least one carbon-carbon double bond combined with .

Better yet, they say, is that these alkenes are “unactivated”—that is, they lack reactive atoms near the double bond—and until now, have proven challenging to enhance.

Jun 22, 2022

Using microbrewery waste to synthesize carbon quantum dots

Posted by in categories: biotech/medical, chemistry, nanotechnology, quantum physics

For a few years now, spent grain, the cereal residue from breweries, has been reused in animal feed. This material could also be used in nanotechnology. Professor Federico Rosei’s team at the Institut national de la recherche scientifique (INRS) has shown that microbrewery waste can be used as a carbon source to synthesize quantum dots. The work, done in collaboration with Claudiane Ouellet-Plamondon of the École de technologie supérieure (ÉTS), was published in the Royal Society of Chemistry’s journal RSC Advances.

Often considered “artificial atoms,” are used in the transmission of light. With a range of interesting physicochemical properties, this type of nanotechnology has been successfully used as a sensor in biomedicine or as LEDs in next generation displays. But there is a drawback. Current quantum dots are produced with heavy and toxic metals like cadmium. Carbon is an interesting alternative, both for its biocompatibility and its accessibility.

Jun 22, 2022

Organ storage a step closer with cryopreservation discovery

Posted by in categories: biotech/medical, chemistry, cryonics, finance, life extension

Australian scientists have taken the first step towards improved storage of human cells, which may lead to the safe storage of organs such as hearts and lungs.

The team’s discovery of new cryoprotective agents opens the door to many more being developed that could one day help to eliminate the need for organ transplant waiting lists. Their results are published in the Journal of Materials Chemistry B.

Cryopreservation is a process of cooling biological specimens down to very low temperatures so they can be stored for a long time. Storing cells through cryopreservation has had big benefits for the world—including boosting supplies at blood banks and assisting reproduction—but it is currently impossible to store organs and simple tissues.

Jun 22, 2022

Scientists observe longitudinal plasmonic field in nanocavity at subnano-scale

Posted by in categories: chemistry, nanotechnology

A group of scientists working on surface-enhanced Raman spectroscopy (SERS) has made a nanoruler to provide insight into the longitudinal plasmonic fields in nanocavities, according to research published in the Journal of the American Chemical Society.

SERS is a highly sensitive and powerful spectral analysis technique applicable in various fields. In to weak Raman scattering, SERS achieves a dramatically enhanced Raman signal of up to 1010–15, allowing the analysis of single molecules.

“How we develop the technology depends, to a large extent, on what we know about fields. In the experiments, we observed an uneven distribution in the plasmonic field at the nano-scale. But it lacks theoretic and experimental support. So we decided to figure it out,” said Yang Liangbao, who leads the team at the Hefei Institutes of Physical Science of the Chinese Academy of Sciences.

Jun 22, 2022

Clean doping strategy produces more responsive phototransistors

Posted by in categories: chemistry, computing, engineering

The library of two-dimensional (2D) layered materials keeps growing, from basic 2D materials to metal chalcogenides. Unlike their bulk counterparts, 2D layered materials possess novel features that offer great potential in next-generation electronics and optoelectronics devices.

Doping engineering is an important and effective way to control the peculiar properties of 2D materials for the application in logical circuits, sensors, and optoelectronic devices. However, additional chemicals have to be used during the process, which may contaminate the materials. The techniques are only possible at specific steps during material synthesis or device fabrication.

In a new paper published in eLight, a team of scientists led by Professor Han Zhang of Shenzhen University and Professor Paras N Prasad of the University of Buffalo studied the implementation of neutron-transmutation doping to manipulate . Their paper, titled has demonstrated the change for the first time.

Jun 22, 2022

Building artificial nerve cells

Posted by in categories: biological, chemistry, computing, space

For the first time, researchers have demonstrated an artificial organic neuron, a nerve cell, that can be integrated with a living plant and an artificial organic synapse. Both the neuron and the synapse are made from printed organic electrochemical transistors.

On connecting to the carnivorous Venus flytrap, the electrical pulses from the artificial nerve cell can cause the plant’s leaves to close, although no fly has entered the trap. Organic semiconductors can conduct both electrons and ions, thus helping mimic the ion-based mechanism of pulse (action potential) generation in plants. In this case, the small electric pulse of less than 0.6 V can induce action potentials in the plant, which in turn causes the leaves to close.

“We chose the Venus flytrap so we could clearly show how we can steer the biological system with the artificial organic system and get them to communicate in the same language,” says Simone Fabiano, associate professor and principal investigator in organic nanoelectronics at the Laboratory of Organic Electronics, Linköping University, Campus Norrköping.

Jun 21, 2022

Biochemists use new tool to control mRNA

Posted by in categories: biotech/medical, chemistry, genetics

A team of researchers at the Institute of Biochemistry at Münster University discovered that by using so-called FlashCaps they were able to control the translation of mRNA by means of light. The results have been published in Nature Chemistry.

DNA () is a long chain of molecules composed of many individual components, and it forms the basis of life on Earth. The function of DNA is to store all genetic information. The translation of this into proteins—which an organism needs to function, develop and reproduce—takes place via mRNA (messenger ribonucleic acid). The DNA is transcribed to mRNA, and the mRNA in turn is translated into proteins (protein biosynthesis). In other words, the mRNA functions as an information carrier. Biochemists at the University of Münster have now developed a new biochemical tool that is able to to control the translation of RNA with the aid of light. These so-called FlashCaps enable researchers to control a variety of processes in cells both spatially and temporally and, as a result, to determine basic functions of proteins.

Jun 21, 2022

Switching DNA functions on and off with light

Posted by in categories: biotech/medical, chemistry, genetics

DNA is the basis of life on earth. The function of DNA is to store all the genetic information an organism needs to develop, function and reproduce. It is essentially a biological instruction manual found in every cell. Biochemists at the University of Münster have now developed a strategy for controlling the biological functions of DNA with the aid of light. This enables researchers to better understand and control the processes that take place in the cell—for example, epigenetics, the key chemical change and regulatory lever in DNA. The results have been published in the journal Angewandte Chemie.

The cell’s functions depend on enzymes. Enzymes are proteins that carry out in the cell. They help to synthesize metabolic products, make copies of the DNA molecules, convert energy for the cell’s activities, change DNA epigenetically and break down certain molecules. A team of researchers headed by Prof. Andrea Rentmeister from the Institute of Biochemistry at the University of Münster used a so-called enzymatic cascade reaction to understand and track these functions better. This sequence of successive reaction steps involving different enzymes makes it possible to transfer so-called photocaging groups—chemical groups that can be removed by means of irradiation with light—to DNA. Previously, studies had shown that only small residues (small modifications such as methyl groups) could be transferred selectively to DNA, RNA (ribonucleic acid) or proteins.

“As a result of our work, it is now possible to transfer larger residues or modifications such as the photocaging groups just mentioned,” explains Nils Klöcker, one of the lead authors of the study and a Ph.D. student at the Institute of Biochemistry. Working together with structural biologist Prof. Daniel Kümmel, who also works at the Institute of Biochemistry, it was also possible to explain the basis for the changed activity at a .

Jun 21, 2022

Aerobic Respiration Part 3 (Tricarboxylic Acid Cycle/Kreb Cycle/Citric Acid Cycle)

Posted by in categories: biological, chemistry

Tricarboxylic acid cycle/kreb cycle/citric acid cycle.

#citricacidcycle #krebs #biochemistry #biology #Cellular #respiration

Continue reading “Aerobic Respiration Part 3 (Tricarboxylic Acid Cycle/Kreb Cycle/Citric Acid Cycle)” »