Menu

Blog

Archive for the ‘chemistry’ category: Page 103

Jul 10, 2023

New study challenges conventional understanding of charging process in electrochemical devices

Posted by in categories: biotech/medical, chemistry, computing, health, neuroscience, wearables

A new study by researchers at the University of Cambridge reveals a surprising discovery that could transform the future of electrochemical devices. The findings offer new opportunities for the development of advanced materials and improved performance in fields such as energy storage, brain-like computing, and bioelectronics.

Electrochemical devices rely on the movement of charged particles, both ions and electrons, to function properly. However, understanding how these charged particles move together has presented a significant challenge, hindering progress in creating new materials for these devices.

In the rapidly evolving field of bioelectronics, soft conductive materials known as conjugated polymers are used for developing that can be used outside of traditional clinical settings. For example, this type of materials can be used to make wearable sensors that monitor patients’ health remotely or implantable devices that actively treat disease.

Jul 9, 2023

Revolutionizing Electrochemistry: Innovating With Nanoporous Model Electrodes

Posted by in categories: chemistry, nanotechnology, particle physics

Scientists have created an innovative model membrane electrode with hollow giant carbon nanotubes and a wide range of nanopore dimensions. The invention aids in understanding electrochemical behaviors and could significantly advance our knowledge of porous carbon materials in electrochemical systems.

Researchers at Tohoku University and Tsinghua University have introduced a next-generation model membrane electrode that promises to revolutionize fundamental electrochemical research. This innovative electrode, fabricated through a meticulous process, showcases an ordered array of hollow giant carbon nanotubes (gCNTs) within a nanoporous membrane, unlocking new possibilities for energy storage and electrochemical studies.

The key breakthrough lies in the construction of this novel electrode. The researchers developed a uniform carbon coating technique on anodic aluminum oxide (AAO) formed on an aluminum substrate, with the barrier layer eliminated. The resulting conformally carbon-coated layer exhibits vertically aligned gCNTs with nanopores ranging from 10 to 200 nm in diameter and 2 μm to 90 μm in length, covering small electrolyte molecules to bio-related large matters such as enzymes and exosomes. Unlike traditional composite electrodes, this self-standing model electrode eliminates inter-particle contact, ensuring minimal contact resistance — something essential for interpreting the corresponding electrochemical behaviors.

Jul 9, 2023

Wearable Sensors that Detect Gas Leaks

Posted by in categories: chemistry, health, holograms, military, wearables

Gas accidents such as toxic gas leakage in factories, carbon monoxide leakage of boilers, or toxic gas suffocation during manhole cleaning continue to claim lives and cause injuries. Developing a sensor that can quickly detect toxic gases or biochemicals is still an important issue in public health, environmental monitoring, and military sectors. Recently, a research team at POSTECH has developed an inexpensive, ultra-compact wearable hologram sensor that immediately notifies the user of volatile gas detection.


[Professor Junsuk Rho’s research team at POSTECH develops wearable gas sensors that display instantaneous visual holographic alarm.].

Jul 8, 2023

Why Hardware And Software Synergy Is The Key To Driving The Future Of Innovation

Posted by in categories: chemistry, engineering, transportation

This benefits customers by accelerating access to future vehicles that feature the latest technology while also enabling their current vehicles to be eligible to receive updates and improvements over time—unlocking additional value beyond the initial point of purchase. And for large enterprises, shorter development cycles with less ground-up engineering can equate to significant cost savings and allow more investment in innovation.

Beyond vehicles themselves, the tools, techniques and processes that are required to engineer and manufacture at scale are also benefitting from developments in the latest hardware technology. Advancements in raw material chemistry and processing, fabrication and physical sciences are leading to lighter, stronger and better-performing vehicle applications in parallel with greater connectivity.

As advancements in transportation technology continue to evolve, it’s important for companies to balance their focus on the continual development of both hardware and software technologies. Forgoing advancements in one without investing in the development of the other can lead to significant risks and missed opportunities for long-term success.

Jul 8, 2023

Engineering cellular communication between light-activated synthetic cells and bacteria

Posted by in categories: bioengineering, biotech/medical, chemistry

Synthetic cells are a versatile technology with the potential to serve as smart delivery devices or as chassis for creating life from scratch. Despite the development of new tools and improvements in synthetic cell assembly methods, the biological parts used to regulate their activity have limited their reach to highly controlled laboratory environments12. In the field’s preliminary work, well-established arabinose and IPTG-inducible transcription factors and theophylline-responsive riboswitches were used to control in situ gene expression5,6. Still, each performed poorly in vitro and represented a leaky, insensitive route of transcription/translation control. Later, the transition to AHSL-sensitive transcription factors afforded synthetic cells the ability to sense and produce more biologically useful QS molecules, which are central to coordinating collective bacterial behaviors. Although this marked considerable progress toward integrating synthetic cells with living cells, the most frequently adopted QS systems used to date, LuxR/LuxI and EsaR/EsaI, recognize and synthesize the same AHSL (3OC6-HSL), limiting the variety of synthetic cell activators that work orthogonally5,7,10,11.

In this work, we diverged from using naturally derived parts to control gene expression, instead utilizing chemically modified LA-DNA templates to tightly and precisely control the location of synthetic cell activation with UV light. This LA-DNA approach was subsequently implemented to regulate communication with E. coli cells using the BjaI/BjaR QS system, adding this unique branched AHSL into the synthetic cell communication toolbox. We believe this system is ideally suited to synthetic cell communication. It couples an acyl-CoA-dependent synthase, BjaI, which efficiently synthesizes IV-HSL from its commercially available substrates, IV-CoA and SAM, with a highly sensitive IV-HSL-dependent transcription factor, BjaR, that activates gene expression at picomolar concentrations of IV-HSL.

Jul 6, 2023

Transcription Factors Can Bind RNA & Have a Big Impact

Posted by in categories: biological, chemistry

Some transcription factors are known as master regulators, and they can have an impact on many different biochemical pathways and processes in cells. | Cell And Molecular Biology.

Jul 6, 2023

Nearly half of the tap water in the US is contaminated with ‘forever chemicals,’ government study finds

Posted by in categories: chemistry, government, health

Almost half of the tap water in the US is contaminated with chemicals known as “forever chemicals,” according to a new study from the US Geological Survey.

The number of people drinking contaminated water may be even higher than what the study found, however, because the researchers weren’t able to test for all of these per-and polyfluorinated alkyl substances, or PFAS, chemicals that are considered dangerous to human health. There are more than 12,000 types of PFAS, according to the National Institutes of Health, but this study looked at only 32 of the compounds.

Jul 6, 2023

Chemists have a new tool to predict 3D structures of f-block organometallics

Posted by in categories: chemistry, computing, nuclear energy

One of the greatest challenges facing the future of clean nuclear energy is scientists’ ability to recover heavy metals from nuclear waste, such as lanthanides and actinides. A new computational tool could help chemists design ligands to selectively bind valuable metals in organometallic complexes.

Nuclear waste contains a smorgasbord of elements from across the periodic table, including transition metals, lanthanides, and actinides. Ideally, scientists would like to reduce the amount of waste generated from nuclear reactors by separating out elements that could be repurposed elsewhere. To tackle these tricky chemical separation techniques, chemists often start with 3D structural models to design ligands that can selectively bind the desired metal to form an organometallic complex that can later be isolated.

Though researchers working with d-block organometallics have an arsenal of structural prediction tools at their disposal, there are no resources available to do the same for the full range of lanthanide and actinide complexes. That’s partly because these f-block elements can form higher coordinate complexes with ligands compared to d-block transition metals, according to Ping Yang and Michael G. Taylor, computational chemists at Los Alamos National Laboratory.

Jul 6, 2023

Researchers create highly conductive metallic gel for 3D printing

Posted by in categories: 3D printing, 4D printing, chemistry, engineering

Researchers have developed a metallic gel that is highly electrically conductive and can be used to print three-dimensional (3D) solid objects at room temperature. The paper, “Metallic Gels for Conductive 3D and 4D Printing,” has been published in the journal Matter.

“3D printing has revolutionized manufacturing, but we’re not aware of previous technologies that allowed you to print 3D metal objects at room in a single step,” says Michael Dickey, co-corresponding author of a paper on the work and the Camille & Henry Dreyfus Professor of Chemical and Biomolecular Engineering at North Carolina State University. “This opens the door to manufacturing a wide range of electronic components and devices.”

To create the metallic gel, the researchers start with a solution of micron-scale particles suspended in water. The researchers then add a small amount of an indium-gallium alloy that is liquid metal at room temperature. The resulting mixture is then stirred together.

Jul 5, 2023

From Atoms to Materials: Algorithmic breakthrough unlocks path to sustainable technologies

Posted by in categories: chemistry, computing, information science, mathematics, particle physics, sustainability

New research by the University of Liverpool could signal a step change in the quest to design the new materials that are needed to meet the challenge of net zero and a sustainable future.

Published in the journal Nature, Liverpool researchers have shown that a mathematical algorithm can guarantee to predict the structure of any material just based on knowledge of the atoms that make it up.

Developed by an interdisciplinary team of researchers from the University of Liverpool’s Departments of Chemistry and Computer Science, the algorithm systematically evaluates entire sets of possible structures at once, rather than considering them one at a time, to accelerate identification of the correct solution.