Toggle light / dark theme

Missing messenger RNA fragments could be key to new immunotherapy for hard-to-treat brain tumors

A new study, led by researchers at Children’s Hospital of Philadelphia (CHOP), identified tiny pieces of messenger RNA that are missing in pediatric high-grade glioma tumors but not in normal brain tissues. Preclinical research indicates that these missing RNA fragments can make difficult-to-treat tumors more responsive to immunotherapy. The findings were recently published in the journal Cell Reports.

One of the biggest challenges facing is the need to find safe and effective therapies for the most aggressive types of brain tumors. Adoptive immunotherapies with CAR-T cells are promising; however, they often also target , which share most surface proteins with . While this might be tolerable in patients with certain types of blood cancer, in the brain, wiping out healthy neurons is unacceptable. This means that deep knowledge of gene expression patterns exclusive to is critical.

A potential means of discovering new therapeutic targets for brain tumors may lie in , a process whereby a single gene produces multiple proteins by rearranging exons, the building blocks of messenger RNA, in different combinations. Researchers suspected that splicing in glioma cells may differ from splicing in normal brain cells, which could help devise new therapeutic interventions.

Building a Synthetic Cell Together

Synthetic cells are artificial constructs designed to mimic cellular functions, offering insights into fundamental biology, as well as promising impact in the fields of medicine, biotechnology, and bioengineering. In this perspective, the authors highlight major scientific hurdles, such as the integration of functional modules by ensuring compatibility across diverse synthetic subsystems, and propose strategies to advance the field.

Human embryo implantation recorded in real time for the first time

Researchers at the Institute for Bioengineering of Catalonia (IBEC) in collaboration with the Dexeus University Hospital have captured unparalleled images of a human embryo implanting. This is the first time that the process has been recorded in real time and in 3D.

Long-term transcranial magnetic stimulation plus language therapy may slow aphasia progression

Hospital Clínico San Carlos in Madrid-led research reports that intermittent theta-burst transcranial magnetic stimulation (TMS) paired with language therapy over six months was associated with positive outcomes in primary progressive aphasia (PPA). Improvements included less decline in regional brain metabolism and improvements in language abilities, functional independence, and neuropsychiatric symptoms.

Primary progressive aphasia is a neurodegenerative clinical syndrome with insidious onset characterized by prominent speech and/or . It is a syndrome that can be the mode in which common causes of dementia, Alzheimer’s disease and frontotemporal degeneration are initially present.

According to current international consensus criteria, three variants are recognized: nonfluent/agrammatic, semantic, and logopenic. Speech-language intervention has proven to be beneficial.

Chemical tag CRISPR technique could transform genetic disease treatment

A new generation of CRISPR technology developed at UNSW Sydney offers a safer path to treating genetic diseases like sickle cell, while also proving beyond doubt that chemical tags on DNA—often thought to be little more than genetic cobwebs—actively silence genes.

Visual thalamus reshapes information beyond simple relay function, study finds

When you see something—a tree in your backyard, say, or the toy your toddler hands you—that visual information travels from your retinas to your brain. And like a train stopping at stations along its route, the information pauses at particular regions of the brain where it’s processed and sent along to its next location.

A region called the visual thalamus has been thought to be primarily a relay, simply directing to its next area. But a new study published in Neuron finds that the thalamus actually integrates additional information from other and reshapes the information it sends along to the brain cortex.

Liang Liang, Ph.D., assistant professor of neuroscience at Yale School of Medicine (YSM) and senior author of the study, suspected the thalamus might be doing more than it had been given credit for.

Brain’s immune response linked to olfactory problems associated with Alzheimer’s

A fading sense of smell can be one of the earliest signs of Alzheimer’s disease even before cognitive impairments manifest. Research by scientists at DZNE and Ludwig-Maximilians-Universität München (LMU) sheds new light on this phenomenon, pointing to a significant role for the brain’s immune response, which seems to fatally attack neuronal fibers crucial for the perception of odors.

The study, published in Nature Communications, is based on observations in mice and humans, including analysis of brain tissue and so-called PET scanning. These findings may help to devise ways for and, consequently, early treatment.

The researchers came to the conclusion that these olfactory dysfunctions arise because immune cells of the brain called “microglia” remove connections between two brain regions, namely the olfactory bulb and the .

Space mice babies: Stem cells cryopreserved in space produce healthy offspring

Features of spaceflight such as gravitational changes and circadian rhythm disruption—not to mention radiation—take a toll on the body, including muscle wasting and decreased bone density. These may even affect the ability to produce healthy offspring.

Studying the impact of spaceflight on —egg and sperm precursor cells—is particularly important because they directly influence the next generation, and any irreversible damage done to these will likely be transmitted to offspring. Previous examinations of embryonic that have undergone spaceflight have revealed abnormalities, but the exact cause of the damage has remained unknown.

This inspired a team of researchers at Kyoto University to test the potential damage to spermatogonial stem cells during spaceflight and the resulting offspring. The team utilized stem cells from , which have a much shorter reproductive life span than humans.

BioNxt advances chemotherapy delivery platform to revolutionise cancer treatment

Hugh Rogers, CEO of BioNxt Solutions, commented: Our team is dedicated to advancing targeted chemotherapy delivery technology to help improve the standard of care for cancer patients.

We look forward to sharing further updates as the programme moves forward.

Unlike conventional chemotherapy, which circulates toxic agents system-wide, BioNxt’s proprietary targeted drug delivery system (TDDS) uses a dual-action mechanism that zeroes in on tumours while safeguarding healthy cells.

Once the drug reaches the tumour environment, it becomes activated and begins releasing its chemotherapeutic payload. Meanwhile, any drug molecules that stray beyond the tumour are rapidly neutralised, only to be reactivated if they re-enter the tumour zone.


BioNxt Solutions unveils a revolutionary chemotherapy delivery platform that targets tumours directly, boosting treatment effectiveness.

Biologists identify targets for new pancreatic cancer treatments

Researchers from MIT and Dana-Farber Cancer Institute have discovered that a class of peptides expressed in pancreatic cancer cells could be a promising target for T-cell therapies and other approaches that attack pancreatic tumors.

Known as cryptic peptides, these molecules are produced from sequences in the genome that were not thought to encode proteins. Such peptides can also be found in some healthy cells, but in this study, the researchers identified about 500 that appear to be found only in pancreatic tumors.


Cryptic peptides, which are expressed in pancreatic cancer cells, could be promising targets for T-cell therapies that attack pancreatic tumors, according to a study from MIT and the Dana-Farber Cancer Institute.

/* */