Toggle light / dark theme

“ tabindex=”0” acid UDCA can regulate tumor growth in mice with liver cancer. This discovery suggests that UDCA dietary supplements could offer a fast and effective way to improve outcomes for liver cancer patients.

Immunotherapy is an advanced cancer treatment that harnesses a patient’s immune system to target and destroy tumors. It has significantly improved outcomes for various cancers, including those of the lung, kidney, and bladder. However, its effectiveness against liver cancer has been notably limited—a concerning issue given that liver cancer rates have nearly tripled over the past 40 years.

The rising trend of early-onset cancers in adults under 50, particularly women, is alarming. Genetic, lifestyle, and environmental factors contribute to this increase. Maintaining a healthy weight, quitting tobacco, avoiding alcohol, consuming fiber-rich foods, using sunscreen, and regular physical activity are small lifestyle changes that can significantly reduce cancer risk.

In future, doctors hope the technology could revolutionise the treatment of conditions such as depression, addiction, OCD and epilepsy by rebalancing disrupted patterns of brain activity.

Jacques Carolan, Aria’s programme director, said: “Neurotechnologies can help a much broader range of people than we thought. Helping with treatment resistant depression, epilepsy, addiction, eating disorders, that is the huge opportunity here. We are at a turning point in both the conditions we hope we can treat and the new types of technologies emerging to do that.”

The trial follows rapid advances in brain-computer-interface (BCI) technology, with Elon Musk’s company Neuralink launching a clinical trial in paralysis patients last year and another study restoring communication to stroke patients by translating their thoughts directly into speech.

Collaboration and cooperation are key elements of human social interactions, which can contribute to the efficient achievement of shared goals. While many psychology and neuroscience studies have investigated cooperative behaviors among humans, the complex interplay between these behaviors and their neural underpinnings remain poorly understood.

A research team at Beijing Normal University, supervised by Dr. Yina Ma set out to further explore the neural basis of human cooperation, using a combination of behavioral tasks and intracranial electroencephalography (iEEG). Their paper, published in Nature Neuroscience, delineates distinctive neurocognitive profiles for different states during cooperative tasks.

“Our lab has long been dedicated to understanding how human brains communicate and interact in , such as collective decision-making, intergroup conflict and social cooperation,” Jiaxin Wang, co-first author of the paper, told Medical Xpress.

As humans age, their brain function can progressively decline and they become more vulnerable to developing neurodegenerative diseases, such as dementia. Dementia and other progressive neurological conditions can significantly impair their memory, thinking skills and daily functioning, significantly reducing their quality of life.

Many psychology and neurological studies have tried to identify biological markers and lifestyle factors that can contribute to the development of dementia. Yet the contribution of psychological characteristics (e.g., traits, emotional well-being and cognitive resilience) to a decline in mental functions remains poorly understood.

Researchers at University of Barcelona, University College London (UCL), Normandy University and other institutes across Europe recently set out to fill this gap in the literature, by trying to determine whether specific sets of psychological characteristics relate to brain health in middle and late adulthood. Their paper, published in Nature Mental Health, identified three key psychological profiles that were linked to different cognitive and trajectories after middle-age.

Researchers from Tokyo Metropolitan University have discovered a new superconducting material. They combined iron, nickel, and zirconium, to create a new transition metal zirconide with different ratios of iron to nickel. The findings are published in the Journal of Alloys and Compounds.

While both iron zirconide and nickel zirconide are not superconducting, the newly prepared mixtures are exhibiting a “dome-shaped” phase diagram typical of so-called “unconventional superconductors,” a promising avenue for developing high temperature superconducting materials which can be more widely deployed in society.

Superconductors already play an active role in cutting-edge technologies, from in and maglev systems to superconducting cables for power transmission. However, they generally rely on cooling to temperatures of around four Kelvin, a key roadblock in wider deployment of the technology.