Toggle light / dark theme

Somatic gene delivery faithfully recapitulates a molecular spectrum of high-risk sarcomas

Sarcomas are a group of mesenchymal malignancies which are molecularly heterogeneous. Here, the authors develop an in vivo muscle electroporation system for gene delivery to generate distinct subtypes of orthotopic genetically engineered mouse models of sarcoma, as well as syngeneic allograft models with scalability for preclinical assessment of therapeutics.

🔬Binary Fission Uncovered: DNA Relay-Ratchet Mechanism + Septum Formation!

In this video, we take a deep dive into the fascinating process of binary fission, the primary mode of reproduction in prokaryotic cells like bacteria.

You’ll learn how:
🧬 DNA replication begins the cycle.
⚙️ The DNA relay-ratchet mechanism ensures accurate segregation of chromosomes, and.
🧱 A septum forms to physically divide the cell into two genetically identical daughter cells.

Whether you’re a student, teacher, or just curious about microbiology, this simplified explanation breaks down complex concepts into clear, visual steps.

📚 References & Further Reading:
https://courses.lumenlearning.com/sun… ✨ Support EasyPeasy! Get early access, behind-the-scenes content, and suggest future topics: 👉 / @easypeasylearning 👉 / supereasypeasy 🔔 Don’t forget to like, subscribe, and hit the bell so you never miss a new video!
https://media.springernature.com/full

✨ Support EasyPeasy!
Get early access, behind-the-scenes content, and suggest future topics:
👉 / @easypeasylearning.
👉 / supereasypeasy.
🔔 Don’t forget to like, subscribe, and hit the bell so you never miss a new video!

Gene-editing system targets multiple organs simultaneously

A gene-editing delivery system developed by UT Southwestern Medical Center researchers simultaneously targeted the liver and lungs of a preclinical model of a rare genetic disease known as alpha-1 antitrypsin deficiency (AATD), significantly improving symptoms for months after a single treatment, a new study shows.

Gene-editing nanoparticle system targets multiple organs simultaneously

A gene-editing delivery system developed by UT Southwestern Medical Center researchers simultaneously targeted the liver and lungs of a preclinical model of a rare genetic disease known as alpha-1 antitrypsin deficiency (AATD), significantly improving symptoms for months after a single treatment, a new study shows. The findings, published in Nature Biotechnology, could lead to new therapies for a variety of genetic diseases that affect multiple organs.

“Multi-organ diseases may need to be treated in more than one place. The development of multi-organ-targeted therapeutics opens the door to realizing those opportunities for this and other diseases,” said study leader Daniel Siegwart, Ph.D., Professor of Biomedical Engineering, Biochemistry, and in the Harold C. Simmons Comprehensive Cancer Center at UT Southwestern.

Gene editing—a group of technologies designed to correct disease-causing mutations in the genome—has the potential to revolutionize medicine, Dr. Siegwart explained. Targeting these technologies to specific organs, tissues, or will be necessary to effectively and safely treat patients.