Menu

Blog

Archive for the ‘bioprinting’ category: Page 11

Aug 13, 2018

3D printed biomaterials for bone tissue engineering

Posted by in categories: 3D printing, bioengineering, bioprinting, biotech/medical, life extension

When skeletal defects are unable to heal on their own, bone tissue engineering (BTE), a developing field in orthopedics can combine materials science, tissue engineering and regenerative medicine to facilitate bone repair. Materials scientists aim to engineer an ideal biomaterial that can mimic natural bone with cost-effective manufacturing techniques to provide a framework that offers support and biodegrades as new bone forms. Since applications in BTE to restore large bone defects are yet to cross over from the laboratory bench to clinical practice, the field is active with burgeoning research efforts and pioneering technology.

Cost-effective three-dimensional (3D) printing (additive manufacturing) combines economical techniques to create scaffolds with bioinks. Bioengineers at the Pennsylvania State University recently developed a composite ink made of three materials to 3D print porous, -like constructs. The core materials, polycaprolactone (PCL) and poly (D, L-lactic-co-glycolide) acid (PLGA), are two of the most commonly used synthetic, biocompatible biomaterials in BTE. Now published in the Journal of Materials Research, the materials showed biologically favorable interactions in the laboratory, followed by positive outcomes of in an animal model in vivo.

Since bone is a complex structure, Moncal et al. developed a bioink made of biocompatible PCL, PLGA and hydroxyapatite (HAps) particles, combining the properties of bone-like mechanical strength, biodegradation and guided reparative growth (osteoconduction) for assisted natural bone repair. They then engineered a new custom-designed mechanical extrusion system, which was mounted on the Multi-Arm Bioprinter (MABP), previously developed by the same group, to manufacture the 3D constructs.

Read more

Jul 30, 2018

Allevi, Made in Space team up to develop first 3D bioprinter in space

Posted by in categories: 3D printing, bioprinting, education, space

3D bioprinting company Allevi has teamed up with California-based 3D printing and space technology firm Made In Space to develop the Allevi ZeroG – the first 3D bioprinter capable of working in low-gravity conditions.

Allevi (formerly BioBots) was founded in 2014 by University of Pennsylvania graduates Ricardo Solorzano and Daniel Cabrera. At the time, the ambitious duo set out to develop an accessible desktop bioprinting system which could be used for a wide variety of research and educational applications.

Continue reading “Allevi, Made in Space team up to develop first 3D bioprinter in space” »

Jul 3, 2018

SpaceX mission will bring 3D bioprinter to ISS, plans to 3D print cardiac patches for damaged hearts

Posted by in categories: 3D printing, bioprinting, biotech/medical, space travel

The next phase of a NASA sponsored mission to 3D print human organs and tissues in space will launch in February 2019. A 3D BioFabrication Facility (BFF) developed by nScrypt and Techshot and destined for the International Space Station (ISS) will form part of the cargo of SpaceX CRS-17.

3D printing in zero gravity

Continue reading “SpaceX mission will bring 3D bioprinter to ISS, plans to 3D print cardiac patches for damaged hearts” »

Jun 30, 2018

Scientists can 3D print human heart tissue now. The future is here

Posted by in categories: 3D printing, bioprinting, biotech/medical

One day, 3D bioprinting will be used for printing out entire new organs to replace our old, knackered ones. This week, Chicago-based biotech startup Biolife4D announced a milestone on the road to this goal: Its ability to bioprint human cardiac tissue. Here’s why that’s important.

Read more

Jun 28, 2018

Russian scientists 3D printing biological tissues with magnets in microgravity

Posted by in categories: 3D printing, bioprinting, biotech/medical, nanotechnology

3D bioprinting is a process for patterning and assembling complex functional living architectures in a gradient fashion. Generally, 3D bioprinting utilizes the layer-by-layer method to deposit materials known as bioinks to create tissue-like structures. Several 3D bioprinting techniques have been developed over the last decade, for example, magnetic bioprinting, a method that employs biocompatible magnetic nanoparticles to print cells into 3D structures.

But now a Russian research team has developed a new method of bioprinting that allows to create 3D biological objects without the use of layer-by-layer approach and magnetic labels. The new method, which involves magnetic levitation research in conditions of microgravity, was conducted by the 3D Bioprinting Solutions company in collaboration with other Russian and foreign scientists, including the Joint Institute for High Temperatures of the Russian Academy of Sciences (JIHT RAS).

Continue reading “Russian scientists 3D printing biological tissues with magnets in microgravity” »

May 23, 2018

Bioprinting is the next medical revolution — C2 Montreal

Posted by in categories: bioengineering, bioprinting, biotech/medical

Erik Gatenholm is Co-Founder and CEO here at CELLINK. In 2017, he founded CELLINK to revolutionize the way that we conduct medical research worldwide. He led a workshop at the C2 Montreal conference called “Need a tissue, Bioprinting is the next Medical Revolution”

At C2 Montreal – There was a presentation on bioprinting and Cellink technology. Then there was an activity where people in groups looked at a sample of bioprinted tissue and people worked on exercises of what people thought was possible or preposterous in the future.

Continue reading “Bioprinting is the next medical revolution — C2 Montreal” »

Apr 23, 2018

Inside Cellink, the Swedish company building 3D printers for living tissue

Posted by in categories: 3D printing, bioprinting, biotech/medical

Digital Trends recently paid a fascinating visit to the headquarters of Cellink, one of the most exciting companies working on 3D bioprinted organs. Here is how the up-and-coming bioprinting company from Gothenburg, Sweden is hoping to change the future of medical science as we know it.

Read more

Apr 8, 2018

New DIY 3D Bioprinter to Create Living Human Organs

Posted by in categories: 3D printing, bioprinting, biotech/medical, engineering, life extension

DIYers can bioprint living human organs by modifying an off-the-shelf 3D printer costing about $500, announce researchers who published the plans as open source, enabling anyone to build their own system. [This article first appeared on LongevityFacts. Author: Brady Hartman. ]

Scientists at Carnegie Mellon University (CMU) developed a low-cost 3D bioprinter to print living tissue by modifying a standard desktop 3D printer and released the design as open source so that anyone can build their own system.

Continue reading “New DIY 3D Bioprinter to Create Living Human Organs” »

Mar 15, 2018

I’m excited to see legendary writer Richard Dawkins share my latest Newsweek article on 3D Bioprinting, transhumanism, and Quantum Archaeology

Posted by in categories: 3D printing, bioprinting, quantum physics, transhumanism

Hundreds of comments under his post today: http://www.newsweek.com/quantum-archaeology-quest-3d-bioprin…ife-837967

Read more

Mar 9, 2018

The quest to 3D-bioprint every dead person back to life

Posted by in categories: 3D printing, bioprinting, quantum physics, transhumanism

My new article at Newsweek on transhumanism, 3D Bioprinting the dead, and Quantum Archaeology:


Can radical scientific and technological advances really solve the problem of death?

Continue reading “The quest to 3D-bioprint every dead person back to life” »

Page 11 of 16First89101112131415Last