Menu

Blog

Archive for the ‘biological’ category: Page 71

Dec 20, 2022

Kent team creates material that can stop supersonic impacts

Posted by in categories: bioengineering, biological, physics, space

A Kent team, led by Professors Ben Goult and Jen Hiscock, has created and patented a ground-breaking new shock-absorbing material that could revolutionise both the defence and planetary science sectors.

This novel protein-based family of materials, named TSAM (Talin Shock Absorbing Materials), represents the first known example of a SynBio (or synthetic biology) material capable of absorbing supersonic projectile impacts. This opens the door for the development of next-generation bullet-proof armour and projectile capture materials to enable the study of hypervelocity impacts in space and the upper atmosphere (astrophysics).

Professor Ben Goult explained: Our work on the protein talin, which is the cells natural shock absorber, has shown that this molecule contains a series of binary switch domains which open under tension and refold again once tension drops. This response to force gives talin its molecular shock absorbing properties, protecting our cells from the effects of large force changes. When we polymerised talin into a TSAM, we found the shock absorbing properties of talin monomers imparted the material with incredible properties.’

Dec 20, 2022

A protective probiotic for ALS found

Posted by in category: biological

A probiotic bacterium called Lacticaseibacillus rhamnosus HA-114 prevents neurodegeneration in the C. elegans worm, an animal model used to study amyotrophic lateral sclerosis (ALS).

That’s the finding of a new study at Canada’s CHUM Research Center (CRCHUM) led by Université de Montréal neuroscience professor Alex Parker and published in the journal Communications Biology.

He and his team suggest that the disruption of lipid metabolism contributes to this cerebral degeneration, and show that the neuroprotection provided by HA-114, a non-commercial probiotic, is unique compared to other strains of the same bacterial family tested.

Dec 20, 2022

What Sort of Ethics Would Aliens Practice?

Posted by in categories: biological, ethics, evolution

How ethical would aliens be?

Ethics derived from biological evolution can be harsh — parasitism, invasiveness, and survival at all costs. Ethics derived from human culture is far more benevolent. Would alien ethics be based more on biology or culture? Let’s hope the latter.

Posted on big think, direct weblink at.

Continue reading “What Sort of Ethics Would Aliens Practice?” »

Dec 20, 2022

AI Helped Find Over 50,000 Years Old Hybrid Human Ancestor

Posted by in categories: biological, robotics/AI

As they suggest, Denisova 11 was not an isolated case but rather a hint of a more general introgression process.

This study was the first to use deep learning technologies to inspect human evolution. In the future, it’s expected to become more common in fields such as biology, genomics and evolution.

Dec 20, 2022

Biological Information beyond Genes: Bioelectricity | Michael Levin

Posted by in category: biological

Extract from “Cell Intelligence in Physiological & Morphological Spaces”, kindly contributed by Michael Levin in SEMF’s 2022 Spacious Spatiality.

Full talk: https://www.youtube.com/watch?v=jLiHLDrOTW8

Continue reading “Biological Information beyond Genes: Bioelectricity | Michael Levin” »

Dec 18, 2022

FUTURE OF ARTIFICIAL INTELLIGENCE (2030 — 10,000 A.D.+)

Posted by in categories: augmented reality, bioengineering, biological, genetics, mathematics, physics, Ray Kurzweil, robotics/AI, singularity, space travel

https://www.youtube.com/watch?v=cwXnX49Bofk

This video explores the timelapse of artificial intelligence from 2030 to 10,000A.D.+. Watch this next video about Super Intelligent AI and why it will be unstoppable: https://youtu.be/xPvo9YYHTjE
► Support This Channel: https://www.patreon.com/futurebusinesstech.
► Udacity: Up To 75% Off All Courses (Biggest Discount Ever): https://bit.ly/3j9pIRZ
► Brilliant: Learn Science And Math Interactively (20% Off): https://bit.ly/3HAznLL
► Jasper AI: Write 5x Faster With Artificial Intelligence: https://bit.ly/3MIPSYp.

SOURCES:
https://www.futuretimeline.net.
• The Singularity Is Near: When Humans Transcend Biology (Ray Kurzweil): https://amzn.to/3ftOhXI
• The Future of Humanity (Michio Kaku): https://amzn.to/3Gz8ffA
• Physics of the Future (Michio Kaku): https://amzn.to/33NP7f7
• Physics of the Impossible (Michio Kaku): https://amzn.to/3wSBR4D
• AI 2041: 10 Visions of Our Future (Kai-Fu Lee & Chen Qiufan): https://amzn.to/3bxWat6

Continue reading “FUTURE OF ARTIFICIAL INTELLIGENCE (2030 — 10,000 A.D.+)” »

Dec 18, 2022

Molecular shape-shifting: New theory on autonomous remodeling of structures

Posted by in categories: biological, physics, robotics/AI

Structures made out of building blocks can shift their shape and autonomously self-organize to a new configuration. The physicists Saeed Osat and Ramin Golestanian from the Max Planck Institute for Dynamics and Self-Organization (MPI-DS) revealed this mechanism which may be used to actively manipulate molecular organization. A seed of the novel desired configuration is sufficient to trigger reorganization.

This principle can be applied on to biological blocks which are constantly recycled to form new structures in living systems.

The concept of remodeling is familiar to most people: those who have ever played with Lego bricks know that many combinations and structures possible from the same components.

Dec 15, 2022

A message that resonates

Posted by in categories: biological, particle physics

Researchers from the University of Tsukuba have shown how adding a tiny resonator structure to an ultrafast electron pulse detector reduced the intensity of terahertz radiation required to characterize the pulse duration (ACS Photonics, “Streaking of a Picosecond Electron Pulse with a Weak Terahertz Pulse”).

To study proteins—for example, when determining the mechanisms of their biological actions—researchers need to understand the motion of individual atoms within a sample. This is difficult not just because atoms are so tiny, but also because such rearrangements usually occur in picoseconds—that is, trillionths of a second.

One method to examine these systems is to excite them with an ultrafast blast of laser light, and then immediately probe them with a very short electron pulse. Based on the way the electrons scatter off the sample as a function of the delay time between the laser and electron pulses, researchers can obtain a great deal of information about the atomic dynamics. However, characterizing the initial electron pulse is difficult and requires complex setups or high-powered THz radiation.

Dec 14, 2022

Newly Discovered Immune Response Explains Why We Get Sick When It’s Cold

Posted by in categories: biological, biotech/medical

New research has finally pinned down an physiological change that explains why we are so much more prone to certain respiratory infections when the weather is lousy. The discovery is the first biological mechanism to explain why the common cold, flu and COVID-19 see such significant seasonal spikes when the weather is colder in certain regions, and could help us work on better preventative measures.

“Conventionally, it was thought that cold and flu season occurred in cooler months because people are stuck indoors more where airborne viruses could spread more easily,” said Dr Benjamin Bleier, director of Otolaryngology Translational Research at Mass Eye and Ear and senior author of the study, in a statement.

“Our study however points to a biological root cause for the seasonal variation in upper respiratory viral infections we see each year, most recently demonstrated throughout the COVID-19 pandemic.”

Dec 13, 2022

Producing ‘green’ energy from living plant ‘bio-solar cells’

Posted by in categories: biological, chemistry, food, solar power, sustainability

Though plants can serve as a source of food, oxygen and décor, they’re not often considered to be a good source of electricity. But by collecting electrons naturally transported within plant cells, scientists can generate electricity as part of a “green,” biological solar cell.

Now, researchers reporting in ACS Applied Materials & Interfaces have, for the first time, used a succulent plant to create a living “bio-solar cell” that runs on photosynthesis.

In all , from bacteria and fungi to and animals, electrons are shuttled around as part of natural, biochemical processes. But if electrodes are present, the cells can actually generate electricity that can be used externally. Previous researchers have created fuel cells in this way with bacteria, but the microbes had to be constantly fed. Instead, scientists, including Noam Adir’s team, have turned to photosynthesis to generate current.

Page 71 of 217First6869707172737475Last