Menu

Blog

Archive for the ‘bioengineering’ category: Page 78

Sep 7, 2021

These fridge-free COVID-19 vaccines are grown in plants and bacteria

Posted by in categories: bioengineering, biotech/medical, nanotechnology

Nanoengineers at the University of California San Diego have developed COVID-19 vaccine candidates that can take the heat. Their key ingredients? Viruses from plants or bacteria.

The new fridge-free COVID-19 vaccines are still in the early stage of development. In mice, the vaccine candidates triggered high production of neutralizing antibodies against SARS-CoV-2, the that causes COVID-19. If they prove to be safe and effective in people, the vaccines could be a big game changer for global distribution efforts, including those in rural areas or resource-poor communities.

“What’s exciting about our vaccine technology is that is thermally stable, so it could easily reach places where setting up ultra-low temperature freezers, or having trucks drive around with these freezers, is not going to be possible,” said Nicole Steinmetz, a professor of nanoengineering and the director of the Center for Nano-ImmunoEngineering at the UC San Diego Jacobs School of Engineering.

Sep 5, 2021

CRISPR gene editing and the human race

Posted by in categories: bioengineering, biotech/medical, genetics

Learn More.

Ian Bremmer.

If you could cure genetic diseases by editing DNA sequences, would you?

Continue reading “CRISPR gene editing and the human race” »

Sep 4, 2021

Researchers develop a hypercompact CRISPR

Posted by in categories: bioengineering, biotech/medical

Bioengineers have repurposed a “non-working” CRISPR system to make a smaller version of the genome engineering tool. Its diminutive size should make it easier to deliver into human cells, tissues and the body for gene therapy.

Sep 4, 2021

New bioink brings 3D-printing of human organs closer to reality

Posted by in categories: 3D printing, bioengineering, biotech/medical

Researchers at Lund University have designed a new bioink which allows small human-sized airways to be 3D-bioprinted with the help of patient cells for the first time. The 3D-printed constructs are biocompatible and support new blood vessel growth into the transplanted material. This is an important first step towards 3D-printing organs.

Therefore, researchers are looking at ways to increase the amount of lungs available for transplantation. One approach is fabricating lungs in the lab by combining cells with a bioengineered scaffold.

Sep 2, 2021

What is Consciousness? A New Documentary Consciousness: Evolution of the Mind, Part I

Posted by in categories: bioengineering, education, quantum physics, robotics/AI

Life is an integrated flow of quantum computational processes giving rise to our conscious experience. Based on the ontological model, the Cybernetic Theory of Mind by evolutionary cyberneticist Alex Vikoulov that he expands on in his magnum opus The Syntellect Hypothesis: Five Paradigms of the Mind’s Evolution, comes a new documentary ― Consciousness: Evolution of the Mind.

This film, hosted by the author of the book from which the narrative is derived, is now available for viewing on demand on Vimeo, Plex, Tubi, Social Club TV and other global networks with its worldwide premiere aired on June 8 2021. This is a futurist’s take on the nature of consciousness and reverse engineering of our thinking in order to implement it in cybernetics and AI systems.

Continue reading “What is Consciousness? A New Documentary Consciousness: Evolution of the Mind, Part I” »

Sep 2, 2021

The Era of Genetically Modified Superhumans

Posted by in categories: bioengineering, biotech/medical, ethics, evolution, genetics, life extension

The late 21st century belongs to Superhumans. Technological progress in the field of medicine through gene editing tools like CRISPR is going to revolutionize what it means to be human. The age of Superhumans is portrayed in many science fiction movies, but for the first time in our species history, radically altering our genome is going to be possible through the methods and tools of science.

The gene-editing tool CRISPR, short for clustered regularly interspaced short palindromic repeats, could help us to reprogram life. It gives scientists more power and precision than they have ever had to alter human DNA.

Continue reading “The Era of Genetically Modified Superhumans” »

Sep 1, 2021

Developing Cohesive, Domestic Rare Earth Element (REE) Technologies

Posted by in categories: bioengineering, biological

Program aims to fortify supply chain by utilizing bioengineering approaches to facilitate REE separation and purification.


Rare Earth Elements (REEs) are a group of 17 similar metals that are critical material components of many DoD systems, including lasers, precision-guided weapons, magnets for motors, and other devices.1 Although the U.S. has adequate domestic REE resources, its supply chain is vulnerable due to dependence on foreign entities for separation and purification of these elements. “Biomining,” an approach that uses microbes to extract or separate target metals like gold or copper from a variety of sources is not yet useful for REEs because of poor specificity and selectivity of the microbes for REEs. The Environmental Microbes as a BioEngineering Resource (EMBER) program aims to leverage advances in microbial and biomolecular engineering to develop a scalable bio-based separation and purification strategy for REEs using under-developed domestic sources.

“The EMBER program will aim to fill a critical DoD supply chain gap” stated Dr. Linda Chrisey, EMBER program manager. “The program will target the development of bioengineered organisms/biomolecular approaches for REE purification, then translate these to practical biomining modules (e.g., biosorbent, biofiltration) that can be integrated with domestic REE sources.”

Continue reading “Developing Cohesive, Domestic Rare Earth Element (REE) Technologies” »

Sep 1, 2021

Synthetic Biology Enables Microbes To Build Muscle Fibers That Are Tougher Than Kevlar

Posted by in categories: bioengineering, biological

No animals were harmed in the production of the synthetic muscle fibers, which are tougher than Kevlar.

Would you wear clothing made of muscle fibers? Use them to tie your shoes or even wear them as a belt? It may sound a bit odd, but if those fibers could endure more energy before breaking than cotton, silk, nylon, or even Kevlar, then why not?

Don’t worry, this muscle could be produced without harming a single animal.

Sep 1, 2021

DNA repair using CRISPR will be key to future space exploration

Posted by in categories: bioengineering, biotech/medical

DNA damage by radiation is a concern for space travelers. New experiments on the ISS show that CRISPR gene editing tools can function in space and can potentially be used to mitigate these effects.

Image credit: Norbert Kowalczyk Unsplash

Studying DNA repair is key to future space exploration, which could expose humans to risk of DNA damage caused by radiation. Conditions in space also could affect the way the body repairs such damage, potentially compounding that risk.

Aug 31, 2021

Synthetic biology enables microbes to build muscle

Posted by in categories: bioengineering, biological, chemistry

Would you wear clothing made of muscle fibers? Use them to tie your shoes or even wear them as a belt? It may sound a bit odd, but if those fibers could endure more energy before breaking than cotton, silk, nylon, or even Kevlar, then why not?

Don’t worry, this muscle could be produced without harming a single animal.

Researchers at the McKelvey School of Engineering at Washington University in St. Louis have developed a synthetic chemistry approach to polymerize proteins inside of engineered microbes. This enabled the microbes to produce the high molecular weight muscle protein, titin, which was then spun into fibers.

Page 78 of 214First7576777879808182Last