Researchers have developed a novel method for generating structured terahertz light beams using programmable spintronic emitters. This breakthrough offers a significant leap forward in terahertz technology, enabling the generation and manipulation of light with both spin and orbital angular momentum at these frequencies for the first time.
Terahertz radiation lies between microwaves and infrared light on the electromagnetic spectrum. It holds great promise for various applications, including security scanners, medical imaging, and ultrafast communication. However, generating and controlling terahertz light effectively has proven challenging.
This new research, published in eLight and led by Prof. Zhensheng Tao, Prof. Yizheng Wu from Fudan University and Prof. Yan Zhang from Capital Normal University, overcomes these limitations by employing programmable spintronic emitters based on exchange-biased magnetic multilayers. These devices consist of thin layers of magnetic and non-magnetic materials that convert laser-induced spin-polarized currents into broadband terahertz radiation.
Leave a reply