The field of research focusing on self-propelled particles, known as active particles, is rapidly expanding. In most theoretical models, these particles are assumed to maintain a constant swimming speed. However, this assumption does not hold true for many experimentally produced particles, like those propelled by ultrasound for medical applications. Their propulsion speed varies with orientation.
A team of physicists, led by Prof. Raphael Wittkowski from the University of Münster and including Prof. Michael Cates from the University of Cambridge, conducted a collaborative study to explore how this orientation-dependent speed influences the behavior of particle systems, particularly in cluster formation.
They combined computer simulations with theoretical analysis to uncover new effects in systems of active particles with orientation-dependent speeds. Their findings were recently published in the journal Physical Review Letters.
Comments are closed.