Macromolecular machines acting on genes are at the core of life’s fundamental processes, including DNA replication and repair, gene transcription and regulation, chromatin packaging, RNA splicing, and genome editing. Here, we report the increasing role of computational biophysics in characterizing the mechanisms of “machines on genes”, focusing on innovative applications of computational methods and their integration with structural and biophysical experiments. We showcase how state-of-the-art computational methods, including classical and ab initio molecular dynamics to enhanced sampling techniques, and coarse-grained approaches are used for understanding and exploring gene machines for real-world applications.
Machines on Genes through the Computational Microscope
Posted in biotech/medical, computing, nanotechnology