Menu

Blog

Sep 16, 2021

Intel AI Team Proposes A Novel Machine Learning (ML) Technique, ‘Multiagent Evolutionary Reinforcement Learning (MERL)’ For Teaching Robots Teamwork

Posted by in categories: innovation, robotics/AI

Reinforcement learning is an interesting area of machine learning (ML) that has advanced rapidly in recent years. AlphaGo is one such RL-based computer program that has defeated a professional human Go player, a breakthrough that experts feel was a decade ahead of its time.

Reinforcement learning differs from supervised learning because it does not need the labelled input/output pairings for training or the explicit correction of sub-optimal actions. Instead, it investigates how intelligent agents should behave in a particular situation to maximize the concept of cumulative reward.

This is a huge plus when working with real-world applications that don’t come with a tonne of highly curated observations. Furthermore, when confronted with a new circumstance, RL agents can acquire methods that allow them to behave even in an unclear and changing environment, relying on their best estimates at the proper action.

Comments are closed.