Menu

Blog

Oct 1, 2019

Machine learning finds new metamaterial designs for energy harvesting

Posted by in categories: chemistry, robotics/AI, sustainability

Electrical engineers at Duke University have harnessed the power of machine learning to design dielectric (non-metal) metamaterials that absorb and emit specific frequencies of terahertz radiation. The design technique changed what could have been more than 2000 years of calculation into 23 hours, clearing the way for the design of new, sustainable types of thermal energy harvesters and lighting.

The study was published online on September 16 in the journal Optics Express.

Metamaterials are synthetic materials composed of many individual engineered features, which together produce properties not found in nature through their structure rather than their chemistry. In this case, the terahertz metamaterial is built up from a two-by-two grid of silicon cylinders resembling a short, square Lego.

Comments are closed.