September 2010 – Lifeboat News: The Blog https://lifeboat.com/blog Safeguarding Humanity Thu, 11 Nov 2021 01:37:49 +0000 en-US hourly 1 https://wordpress.org/?v=6.6.1 The problems in our world aren’t technical, but social https://lifeboat.com/blog/2010/09/the-problems-in-our-world-arent-technical-but-social https://lifeboat.com/blog/2010/09/the-problems-in-our-world-arent-technical-but-social#comments Sun, 26 Sep 2010 15:38:24 +0000 http://lifeboat.com/blog/?p=1246 If the WW II generation was The Greatest Generation, the Baby Boomers were The Worst. My former boss Bill Gates is a Baby Boomer. And while he has the potential to do a lot for the world by giving away his money to other people (for them to do something they wouldn’t otherwise do), after studying Wikipedia and Linux, I see that the proprietary development model Gates’s generation adopted has stifled the progress of technology they should have provided to us. The reason we don’t have robot-driven cars and other futuristic stuff is that proprietary software became the dominant model.

I start the AI chapter of my book with the following question: Imagine 1,000 people, broken up into groups of five, working on two hundred separate encyclopedias, versus that same number of people working on one encyclopedia? Which one will be the best? This sounds like a silly analogy when described in the context of an encyclopedia, but it is exactly what is going on in artificial intelligence (AI) research today.

Today, the research community has not adopted free software and shared codebases sufficiently. For example, I believe there are more than enough PhDs today working on computer vision, but there are 200+ different codebases plus countless proprietary ones.

Simply put, there is no computer vision codebase with critical mass.

We can blame the Baby Boomers for making proprietary software the dominant model. We can also blame them for outlawing nuclear power, never drilling in ANWR despite decades of discussion, never fixing Social Security, destroying the K-12 education system, handing us a near-bankrupt welfare state, and many of the other long-term problems that have existed in this country for decades that they did not fix, and the new ones they created.

It is our generation that will invent the future, as we incorporate more free software, more cooperation amongst our scientists, and free markets into society. The boomer generation got the collectivism part, but they failed on the free software and the freedom from government.

My book describes why free software is critical to faster technological development, and it ends with some pages on why our generation needs to build a space elevator. I believe that in addition to driverless cars, and curing cancer, building a space elevator, getting going on nanotechnology, and terraforming Mars are also in reach. Wikipedia surpassed Encyclopedia Britanicca in 2.5 years. The problems in our world are not technical, but social. Let’s step up. We can make much of it happen a lot faster than we think.

]]>
https://lifeboat.com/blog/2010/09/the-problems-in-our-world-arent-technical-but-social/feed 3
American Institute of Physics reveals more cost-efficient selenium photovoltaic cells https://lifeboat.com/blog/2010/09/american-institute-of-physics-reveals-us-more-cost-efficient-selenium-photovoltaic-cells Mon, 20 Sep 2010 03:26:30 +0000 http://lifeboat.com/blog/?p=1239 Did you know that many researchers would like to discover light-catching components in order to convert more of the sun’s power into carbon-free electric power?

A new study reported in the journal Applied Physics Letters in August this year (published by the American Institute of Physics), explains how solar energy could potentially be collected by using oxide materials that have the element selenium. A team at the Lawrence Berkeley National Laboratory in Berkeley, California, embedded selenium in zinc oxide, a relatively affordable material that could make more efficient use of the sun’s power.

The team noticed that even a relatively small amount of selenium, just 9 percent of the mostly zinc-oxide base, significantly enhanced the material’s efficiency in absorbing light.

The main author of this study, Marie Mayer (a fourth-year University of California, Berkeley doctoral student) affirms that photo-electrochemical water splitting, that means using energy from the sun to cleave water into hydrogen and oxygen gases, could potentially be the most fascinating future application for her labor. Managing this reaction is key to the eventual production of zero-emission hydrogen powered motors, which hypothetically will run only on water and sunlight.

Journal Research: Marie A. Mayer et all. Applied Physics Letters, 2010 [link: http://link.aip.org/link/APPLAB/v97/i2/p022104/s1]

The conversion efficiency of a PV cell is the proportion of sunlight energy that the photovoltaic cell converts to electric power. This is very important when discussing Pv products, because improving this efficiency is vital to making Photovoltaic energy competitive with more traditional sources of energy (e.g., fossil fuels).

For comparison, the earliest Photovoltaic products converted about 1%-2% of sunlight energy into electric energy. Today’s Photo voltaic devices convert 7%-17% of light energy into electric energy. Of course, the other side of the equation is the money it costs to produce the PV devices. This has been improved over the decades as well. In fact, today’s PV systems generate electricity at a fraction of the cost of early PV systems.

In the 1990s, when silicon cells were 2 times as thick, efficiencies were much smaller than nowadays and lifetimes were reduced, it may well have cost more energy to make a cell than it could generate in a lifetime. In the meantime, the technological know-how has progressed significantly, and the energy repayment time (defined as the recovery time necessary for generating the energy spent to produce the respective technical energy systems) of a modern photovoltaic module is generally from 1 to 4 years depending on the module type and location.

Usually, thin-film technologies — despite having comparatively low conversion efficiencies — obtain significantly shorter energy repayment times than standard systems (often < 1 year). With a normal lifetime of 20 to 30 years, this means that contemporary photovoltaic cells are net energy producers, i.e. they generate significantly more energy over their lifetime than the energy expended in producing them.

The author — Rosalind Sanders writes for the solar pool cover ratings blog, her personal hobby weblog focused on tips to help home owners to save energy with solar power.

]]>
The Politics and Ethics of the Hall Weather Machine https://lifeboat.com/blog/2010/09/the-politics-and-ethics-of-the-hall-weather-machine https://lifeboat.com/blog/2010/09/the-politics-and-ethics-of-the-hall-weather-machine#comments Mon, 20 Sep 2010 02:32:32 +0000 http://lifeboat.com/blog/?p=1221 Abstract

J. Storrs Hall’s Weather Machine is a relatively simple nanofabricated machine system with significant consequences in politics and ethics.

After a brief technical description, this essay analyzes the ends, means, and circumstances of a feasible method of controlling the weather, and includes some predictions regarding secondary effects.

 
Article

When a brilliant person possesses a fertile imagination and significant technical expertise, he or she is likely to imagine world-changing inventions. J. Storrs Hall is the epitome of those geniuses, and his Utility Fog [1] and Space Pier [2] are brilliant engineering designs that will change the world once they are reduced to practice. His most recent invention is the Weather Machine [3], which has been examined by none other than Robert Freitas and found to be technically reasonable—-though Freitas may have found an improved method for climate control that avoids some of the problems discussed below [4].

The Hall Weather Machine is a thin global cloud consisting of small transparent balloons that can be thought of as a programmable and reversible greenhouse gas because it shades or reflects the amount of sunlight that hits the upper stratosphere. These balloons are each between a millimeter and a centimeter in diameter, made of a few-nanometer thick diamondoid membrane. Each balloon is filled with hydrogen to enable it to float at an altitude of 60,000 to 100,000 feet, high above the clouds. It is bisected by an adjustable sheet, and also includes solar cells, a small computer, a GPS receiver to keep track of its location, and an actuator to occasionally (and relatively slowly) move the bisecting membrane between vertical and horizontal orientations. Just like with a regular high-altitude balloon, the heavier control and energy storage systems would be on the bottom of the balloon to automatically set the vertical axis without requiring any energy. The balloon would also have a water vapor/hydrogen generator system for altitude control, giving it the same directional navigation properties that an ordinary hot-air balloon has when it changes altitudes to take advantage of different wind directions at different altitudes.

Four versions of balloons are possible, depending on nature of the bisecting membrane.

  • Version 1. Transparent/Opaque: The bisecting membrane is opaque, and rotates from the horizontal to the vertical in order to control the amount of solar radiation that it allows through (the membrane might be replaced by a immobile liquid crystal that has two basic states: transparent and opaque).
  • Version 2. Emissivity Control: The membrane is white on one side, black on the other. When it is horizontal, either side can be presented upwards; white to scatter the solar radiation into space, black to absorb it into the upper atmosphere.
  • Version 3. Reflection Control: The membrane is black on one side, with a reflective metallic coating on the other. This can direct solar energy in specific directions to increase the effectiveness of solar farms, or to steer hurricanes. Another feature of this version is that it enables the multiple reflection of light from sunlit to dark areas.
  • Version 4. Advanced Photon Control: The balloon would be filled with an aerogel-density metamaterial that could not only control reflectivity via diffraction, but also control the frequency and phase of outgoing photons (with or without stimulated emission). Technically, designing and controlling these kinds of balloons would be a magnitude or two more complex than the earlier versions.

What is impressive about the Weather Machine is that by controlling a tenth of one percent of solar radiation is enough to force global climate in any direction we want. One percent is enough to change regional climate, and ten percent is enough for serious weather control.

 
The Problems

Every human-designed system has unintended bugs, and may cause negative consequences. That is why we have professional engineering societies, non-profit standards organizations, and government bureaucracies—to help protect the public. There is, therefore, some concern that the Weather Machine will accidentally cause catastrophic weather. However, given the accuracy of weather predictions and global warming models, and the slow movement of masses of air, and the fact that humans are in the loop (and in an emergency, could use a failsafe mode to force all the balloons to drop from the sky), the danger of accidental harm is minimal. At any rate, this article is more concerned with the ethical issues, with accidental unintended consequences to be examined elsewhere.

Many people would be happy to stop global warming, though others (currently living in Siberia or Iceland) might be happier without brutally cold winters. This level of climate control raises some problematic issues that may pit one group of people against another. The intended results could be taken care of the same way we normally take of similar issues in a representative democracy—we vote. This sounds nice, except that we’re not just talking about the United States (or any single nation), but the entire world. And we all know how well the United Nations handles its affairs. Perhaps deciding whether or not we want global warming is a small enough decision that the U.N. can handle it. If not, we can always rely on the world government that evil geniuses want to run, and that conspiracy theorists worry about.

Within the USA, trial lawyers would be especially interested in unintended effects, including trivial ones like rain on parades, or more serious ones like floods and tornadoes. The tremendous inefficiency of this legal nightmare might be meliorated by a “weather tax” that would fund a program to recompense people who are willing to put up with bad weather.

The more advanced versions of balloons are problematic because then the Weather Machine wouldn’t just control the intensity of solar and terrestrial radiation, but could also redirect and concentrate energy. In addition to increasing the effectiveness of solar farms, this would give more powerful and precise control over the weather. Unfortunately, energy concentration is exactly the capability that transforms the Weather Machine into an awesome weapon of mass destruction. Concentrated solar energy has not been used much since 212 BCE [5] when Archimedes used it to set fire the Roman ships that were attacking his city-state of Syracuse. However, the global coordination of the reflective Weather Machine allows bouncing concentrated solar energy around the globe, making it possible to set cities on fire. By fire, I mean the type of fire caused by dropping a nuclear bomb per second for as long as you want. The potential for abuse is rather large.

The most advanced version of the balloon is even better or worse—it contains an aerogel-density (i.e. extremely light and porous) programmable metamaterial that controls the frequency, direction, and phase of the reflected or transmitted radiation. Fully deployed, such a Weather Machine could become a planet-sized telescope—or laser. Small portions of such a system could be used as an effective missile defense system. Configured as a planetary laser, it might be able to defend Earth against stray asteroids such as Apopois, which is due for a flyby in 2029 (and might impact in 2036—especially if some terrorist group places an ion motor on it). Also, a planetary laser could push fairly large rockets rather quickly to Alpha Centari. But if you thought Version 3 was a weapon of mass destruction, Version 4 makes them, and the Transformers look like children’s toys (No wait—that’s what they are ). Optical divergence (currently 1 miliradian for commercially available lasers) will not keep planets from shooting at each other and frying them in their orbits, but the lack of energy density will—unless the balloons can store energy. On the other hand, even primitive laser focusing mechanisms will work fine for lunar infighting.

Given the almost unimaginable weaponization of the Hall Weather Machine, an important reaction is to ask if there any defenses against them. There are two types: those that attack the control algorithms (i.e. cyberware attacks) and those that physically attack the balloons, such as swarms of hunter-killer balloons or larger high-flying “carnivores”. In addition, there are some de-weaponization strategies that will be discussed below.

 
Ethical Issues

In some ways, ethics is like engineering–solving big problems is most easily done by splitting the problem in to smaller pieces. This means that the best way to determine the ethics of any action (such as building and operating a weather machine) is to determine the ethical considerations of each of the ends, means, and circumstances.

As far as “ends” are concerned, the weather machine passes with flying colors, if nothing else because it can fix global warming (or impending ice ages). Depending on a number of variables, we might even increase the number of nice weekends and increase the biome sizes of certain species.

One counter to these benefits claims that by controlling the weather we would be playing God and that the Weather Machine is equivalent to eating from the Tree of Knowledge of Good and Evil. In my view, if God didn’t like us messing with technology, then He should have let us know a long time ago. At any rate, the Bible doesn’t speak against technology per se. Admittedly, the Bible’s tower of Babel story does condemn the pride and arrogance that may result from technology, but that is another story.

A non-theistic (but just as religious) counter to the main intent of the weather machine is made by deep ecology environmentalists. They often claim that controlling the weather is unnatural, that Mother Nature bats last, or that the very idea of weather control is the reason that the global human population should be reduced to the low millions. These sort of arguments represent metaphysical differences regarding the value of individual human beings and the stewardship role we should have with the environment, and I’m not sure how we can address those issues in a book, much less in 3,500 words or less.

The “means” judges the actual methods used to control the climate and the weather. In this case, modulating the Sun’s energy with many small, high-altitude balloons seems ethically neutral. Even the transformation of a 100 million tons of carbon into diamondoid balloons is ethically neutral (unless one gets the carbon from the living bodies of endangered animals, pre-born fetuses, ethnic minorities, or other humans). By some viewpoints, the sequestering of 100 million tons of atmospheric carbon would be considered virtuous (except that this particular sequestration makes the global warming problem go away, to be possibly replaced by bigger ones).

The ethical analysis leaves “circumstances” as the remaining issue, and here is where things get complicated. Circumstances include things like unintended (especially foreseeable) and secondary consequences, such as whether the means or the end may lead to other evils. In general, a consequentialist argument would likely accept some small risk of some harm, and might accept mechanisms (like lawsuits or something more efficient) to provide feedback to fix any inequities. But this is where things get really complicated.

The first possibility, and most often raised, is that building and operating the Weather Machine might result in severe, unpredictable, unintended consequences. There are a few classes of these consequences, the most obvious centered on out-of-control superstorms or droughts. After all, we aren’t that great at predicting hurricane paths. On the other hand, this is because hurricane paths are inherently unstable—precisely because we don’t have any weather control. If we take a car out to the Bonneville salt flats, tie a car’s steering wheel absolutely straight, and then put a brick on the pedal, we cannot predict whether it will eventually circle left or right. But we allow cars on the road all the time precisely because we have such good feedback and control systems (well, except when they’re getting home late on a Saturday night).

Increased predictability would ameliorate the unintended weather problem, and could be reached by using altitude control (and differently-directed winds) for the balloons to remain over a particular piece of land. Then many tests could be run better predict possible harms and to lower the risk of them ever happening. In general, almost all accidental problems caused by a misbehaving Weather Machine (including computer viruses, rogue controllers, broken balloons, and the environmental toxicology of a million tons of inert diamond falling all over the earth) can be ameliorated by good design, adequate testing, and accurate modeling [6].

Others classes of severe, unintended consequences are secondary effects in the environment, the world economy, politics, and other areas. For example, by successfully moving heat from the tropics to the northern areas, we might turn off the Gulf Stream and other important ocean currents? How will the stock market react to California constantly selling it’s bad weather to Michigan? How will a totalitarian tropical country react if Iceland buys 20% of their neighbors’ sunlight for a much higher price than for theirs?

A second possibility is that the Weather Machine is impossible, and working on it may be a waste of money that could be better spend on more worthwhile projects. Given our knowledge of physics, however, this is unlikely. A caveat is that it will be a race to 2030, when diamond mechanosynthesis should be able to crank out the 100 million tons (the equivalent of 100 miles of freeway) of diamond balloons, and when the worst-case scenarios predict the beginning of serious negative effects of anthropogenic carbon [7]) . Will the Hall Weather Machine be built in time to stop Florida from being inundated by the ocean? The answer depends on when nanosystems will achieve top-down bootstrapping or bottom-up Turing equivalence (which is a technical topic for another time).

A third possibility—if the balloons are not location-controllable—might occur if a nation doesn’t want a foreign nation’s balloons over its territory. The obvious hostile response would be to build hunter-killer balloons to destroy any invaders, as this seems to be permitted by current concepts of sovereignty. Such an arms race could (and probably will) escalate ad infinitum, but open source hardware and software might help prevent it. Any military or intelligence personnel (of any country) would freak at the idea of handing the keys to a weapon of mass destruction to the public, but that may be the only viable solution if the control algorithm works using genetic or market mechanisms — maybe like American Idol or Wikipedia. After all, distributed systems should have distributed control systems. Imagine the balloons controlled by many different radio frequencies with a many different authentication algorithms with open source software. Unfortunately, if such public control is our solution against weather weaponization, we will still need to worry about the “tragedy of commons” and “not in my backyard” secondary effects.

There are other issues of international policy. Suppose we want more sunlight in the Dakotas for growing crops. We could buy it from poor tropical countries, or take it from international ocean territories, where it might affect other countries. Depending on the state of the art and it’s acceleration, but especially at the beginning, it is likely that only rich countries will be able to build Weather Machines. More certainly, only rich countries will be able to fund the early experiments to understand what large numbers of balloons will actually do.

Some might object that knowledge is free and can travel anywhere via the Internet. This is true, but consider the BP disaster. Technical expertise on underwater drilling is international; marine science is international; the disaster receiving tons of press coverage; and yet there is large disagreement within the largely free scientific community about the importance of the spill, how long it will take to clean up, etc. In contrast, connecting a large base of nanofactories to the Internet will enable the global spread of atomically-precise physical devices (such as balloons) in seconds, whether or not the experiments are ever done.

A fourth possibility is that the Weather Machine could be used as a weapon of mass inconvenience—a means of unjust coercion by making possible the threat of bad weather. But the ethics of this application use the same principles as the ethics regarding weapons of mass destruction. I have already pointed out the possible use of the Weather Machine as a weapon—the ethical issues surrounding the more advanced versions of the Weather Machine are basically the same as those concerning weapons of mass destruction, though amplified somewhat by their power (tens of megatons of TNT equivalents per second) and precision of control (+/- one degree Fahrenheit).

Fifth, there is the possibility that psychologically, being in control of the weather is not good for developing character. What if human beings are supposed to cower in their caves when lightning and blizzards strike? After all, that is how we evolved, and there are many things we enjoy that are bad for us [8]. Perhaps having so much control and power over the vicissitudes of life is psychologically bad for us. For evidence, look at the rates of depression in advanced nations.

Finally, what is the cost of not building a Weather Machine? If the cost drops low enough, some nation with the chutzpah will build one. And if they are at all successful, the rest of the world will jump in. But what will the cost be if they design it wrong?

Are the Ethics of the Hall Weather Machine Relevant?

The main problem with thinking about the ethics of the Hall Weather Machine is that by the time we can build 100 million tons of atomically precise anything, controlling the weather is going to be the least of our problems. This is because the nanotechnology revolution will bring about a new set of big, hairy problems—some of which I’ve written about elsewhere [9][10], but I fear that most of them we can’t even imaging yet.

May we live in interesting times!

Tihamer Toth-Fejel, MS
General Dynamics Advanced Information Systems
Michigan Research and Development Center

Acknowledgements

Thanks to James Bach and Chris Dodsworth for valuable contributions.


 
Footnotes

[1] J. Storrs Hall, Utility Fog: The Stuff that Dreams are Made Of, http://autogeny.org/Ufog.html

[2] J. Storrs Hall, The Space Pier: A hybrid Space-launch Tower concept, http://autogeny.org/tower/tower.html

[3] J. Storrs Hall, The Weather Machine, (transcript from Global Catastrophic Risks 2008 conference, posted by Jeriaska on December 20th, 2008), http://www.acceleratingfuture.com/people-blog/?p=2637

[4] Robert A. Freitas, Diamond Trees (Tropostats): A Molecular Manufacturing Based System for Compositional Atmospheric Homeostasis, 2010 IMM Report 43, 10 February 2010; http://www.imm.org/Reports/rep043.pdf

[5] Before the Christian Era smile

[6] The details will be examined elsewhere (as time permits).

[7] Coincidentally, it is also when the USA Social Security System is supposed to collapse.

[8] “The killer app for medical nanotechnology will be compensating for poor lifestyle choices like overeating and indiscriminate sex—i.e. diabetes II and AIDS” — a grad student at the 2010 Gordon Conference on Nanostructure Fabrication.

[9] T. Toth-Fejel, “Humanity and Nanotechnology”. National Catholic Bioethics Quarterly, V4N2, Summer 2004.

[10] T. Toth-Fejel, “A Few Lesser Implications of Nanofactories: Global Warming is the least of our Problems.” Nanotechnology Perceptions, March 2009.

]]>
https://lifeboat.com/blog/2010/09/the-politics-and-ethics-of-the-hall-weather-machine/feed 1
New Plant Paradigms (Part X: Power Plants, Greening the Desert, Phyto-Terraforming, and Recommendations) https://lifeboat.com/blog/2010/09/new-plant-paradigms-part-x-power-plants-greening-the-desert-phyto-terraforming-and-recommendations Sun, 19 Sep 2010 18:56:35 +0000 http://lifeboat.com/blog/?p=1218 (End of series. For previous topics please see parts I-IX)

Power plants. Trees could do a lot, as we have seen — and they’re solar powered, too. Once trees can suck metals from the soil and grow useful, shaped objects like copper wire, a few more levels of genetic engineering could enable the tree to use this copper wire to deliver electricity. Since a tree is already, now, a solar energy converter, we can build on that by having the tree grow tissues that convert energy into electricity. Electric eels can already do that, producing enough of a jolt to be lethal to humans. Even ordinary fish produce small amounts of electricity to create electric fields in the water around them. Any object nearby disrupts the field, enabling the fish to tell that something is near, even in total darkness. We may never be able to plug something into a swimming fish but we can already make batteries out of potatoes. So why not trees that grow into electricity providers all by themselves? It would be great to be able to plug your electrical devices into a tree (or at least a socket in your house that is connected to the tree). Then you would no longer need to connect to the grid, purchase solar panels, or install a windmill. You would, however, need to keep your trees healthy and vigorous! Tree care specialists would become a highly employable occupation.

Greening the desert. The Sahara and various other less notorious but still very dry deserts around the world have plenty of sand and rocks. But they don’t have much greenery. The main problem is lack of water. Vast swaths of the Sahara, for example, are plant free. It’s just too dry. However this problem is solvable! Cacti and other desert plants could potentially extract water from the air. Plants already extract carbon dioxide molecules from the air. Even very dry air contains considerable water vapor, so why not extract water molecules too. Indeed, plants already transport water molecules in the ground into their roots, so is it really such a big step to do the same from the air? Tillandsia (air plant) species can already pull in water with their leaves, but it has to be rain or other liquid water. Creating plants that can extract gaseous water vapor from the air in a harsh desert environment would require sophisticated genetic engineering, or a leap for mother nature, but it is still only the first step. Plants get nutrients out of the soil by absorbing fluid that has dissolved them, so dry soil would be a problem even for a plant that contained plenty of water pulled from the air. Another level of genetic engineering or natural evolution would be required to enable them to secrete fluid out of their roots to moisten chunks of soil to dissolve its minerals, and reabsorb the now nutritious, mineral-laden liquid back into their roots.

Once this difficult task is accomplished, whether by natural evolution in the distant future or genetic engineering sooner, things will be different in the desert. Canopies of vegetation that hide the ground will be possible. Thus shaded and sheltered, the ground will be able to support a much richer ecosystem of creatures and maybe even humans than is currently the case in deserts. One of Earth’s harshest environments would be tamed.

Phyto-terraforming. To terraform means to transform a place into an Earth-like state (terra is Latin for Earth). Mars for example is a desert wasteland, but it once ran with rivers, and it would be great if the Martian surface was made habitable — in other words, terraformed. Venus might be made habitable if we could only get rid of its dense blanket of carbon dioxide, which causes such a severe greenhouse effect that its surface is over 800 degrees Fahrenheit, toasty indeed. And why not consider terraforming inhospitable terrain right here on earth, like the Sahara desert, or Antarctica. Phyto-terraforming is terraforming using plants. Actually plants are so favored for this task that when people discuss terraforming, they usually mean phyto-terraforming. Long ago, plants did in fact terraform the Earth, converting a hostile atmosphere with no oxygen but plenty of carbon dioxide into a friendly one with enough oxygen that we can comfortably exist. Plants worked on Earth, and might work on Mars or even Venus, but not on the moon. The reason is that plants need carbon dioxide and water. Venus has these (and reasonable temperatures) high in the atmosphere, suggesting airborne algae cells. Mars is a more likely bet as it has water (as ice) available to surface-dwelling plants at least in places.

If Mars is the most likely candidate for phyto-terraforming, what efforts have been made to move in that direction? A first step has been to splice genes into ordinary plants from an organism that lives in hot water associated with deep ocean thermal vents. This organism is named Pyrococcus furiosus (Pyro- means fire in Greek, coccus refers to ball-shaped bacteria, hence “fireball”). Pyrococcus is most comfortable living at about the boiling point of water and can grow furiously, double its population in 37 minutes. It has evolved genes for destroying free radicals that work better than those naturally present in plants. Free radicals are produced by certain stressors in plants (and humans), cause cell damage, and can even lead to death of the organism. By splicing such genes into the plant Arabidopsis thaliana, the experimental mouse of plant research, this small and nondescript-looking plant can be made much more resistant to heat and lack of water. These genes have also been spliced into tomatoes, which could help feed future colonists. Of course Mars requires cold, not heat tolerance, but the lack of water part is a good start. The heat and drought parts might be useful for building plants to terraform deserts here on Earth, bringing terraforming of Earth deserts a couple of steps closer. With several additional levels of genetic modification, we might eventually terraform Mars yet.

Recommendations

When the advances described here are likely to happen would be good to know. Will they occur in your lifetime? Your grandchildren’s? Thousands or millions of years into the future? If the latter, there is not much point in devoting precious national funds to help bring them about, but if the former, it might be worth the expense of hurrying the process along. To determine the likely timing of future technological advances, we need to determine the speed of advancement. To measure this speed, we can look at the rate at which advances have occurred in the past, and ask what will happen in the future if advances continue along at the same rate. This approach is influential in the modern computer industry in the guise of “Moore’s Law.” However it was propounded at least as early as about 2,500 years ago, when Chinese philosopher Confucius is said to have noted, “Study the past if you would divine the future.” It would be nice to know when we can expect to grow and eat potatoes with small hamburgers in the middle, pluck nuggets of valuable metals from trees, power our homes by plugging into electricity-generating trees growing in our back yards, or terraform Mars.

Opening the floodgates of genetic engineering innovation. Properly regulated to optimally benefit society, genetic engineering of plants has enormous potential, from better and better-tasting food to growing amazing things on trees. However governmental regulation is currently suppressing such advances. Preparing applications to government regulatory agencies for permission to commercially grow genetically engineered plants currently costs many millions of dollars in many countries. Thus only genetic modifications to major commodity crops like corn and soy are generally cost-effective to commercialize. Worse, only big agribusinesses can afford the costs. And why should they object? After all, who needs small, game-changing startup companies moving in, upending the status quo, creating new economic growth and value with new kinds of crops, and generally making life complicated for the giant agribusinesses? Simpler just to keep the costs of applying for permission to grow so high that such upstarts are kept out of the picture. That way predictable profits flow in even if, overall, innovation and the consequent economic expansion is suppressed. But you can’t blame the giants, which are legally obligated to serve the interests of their shareholders. It is illegal for a corporation in the US to further the interests of society at substantial expense to its shareholders! Governments should regulate commercialization of genetically engineered crops optimally, protecting the world from harmful frankenplants while promoting exciting, progressive and beneficial crop innovations.

References

“We may never be able to plug something into a swimming fish, but we can already make batteries out of potatoes.” A. Golberg, H. D. Rabinowitch, and B. Rubinsky, Zn/Cu-vegetative batteries, bioelectrical characterizations, and primary cost analyses, Journal of Renewable Sustainable Energy (2010), Vol. 2, Issue 3, http://jrse.aip.org/jrsebh/v2/i3/p033103_s1, doi:10.1063/1.3427222.

“This organism is named Pyrococcus furiosus…”: G. Fiala and K. O. Stetter, Pyrococcus furiosus sp. nov. represents a novel genus of marine heterotrophic archaebacteria growing optimally at 100°C, Archives of Microbiology (June 1986), vol. 145, no. 1, pp. 56–61.

“By splicing such genes into the plant Arabidopsis thaliana…this small and nondescript-looking plant can be made much more resistant to heat and lack of water.” W. F. Boss and A. M. Grunden, Redesigning living organisms to survive on Mars, NASA Institute for Advance Concepts Annual Meeting (2006), http://www.niac.usra.edu/files/library/meetings/annual/oct06/1194Boss.pdf

“They have also been spliced into tomatoes, which could help feed future colonists.” W. Boss, http://www.cals.ncsu.edu/plantbiology/BossLab/hfiles/overview.html, 5/29/10.

]]>
Self Transcendence https://lifeboat.com/blog/2010/09/self-transcendence Thu, 02 Sep 2010 15:24:21 +0000 http://lifeboat.com/blog/2010/09/self-transcendence Will our lumbering industrial age driven information age segue smoothly into a futuristic marvel of yet to be developed technology? It might. Or take quantum leaps. It could. Will information technology take off exponentially? It’s accelerating in that direction. The way knowledge is unraveling its potential for enhancing human ingenuity, the future looks bright indeed. But there is a problem. It’s that egoistic tendency we have of defending ourselves against knowing, of creating false images to delude ourselves and the world, and of resolving conflict violently. It’s as old as history and may be an inevitable part of life. If so, there will be consequences.

Who has ever seen drama/comedy without obstacles to overcome, conflicts to confront, dilemmas to address, confrontations to endure and the occasional least expected outcome? Just as Shakespeare so elegantly illustrated. Good drama illustrates aspects of life as lived, and we do live with egoistic mental processes that are both limited and limiting. Wherefore it might come to pass that we who are of this civilization might encounter an existential crisis. Or crunch into a bottleneck out of which … will emerge what? Or extinguish civilization with our egoistic conduct acting from regressed postures with splintered perception.

What’s least likely is that we’ll continue cruising along as usual.

Not with massive demographic changes, millions on the move, radical climate changes, major environmental shifts, cyber vulnerabilities, changing energy resources, inadequate clean water and values colliding against each other in a world where future generations of the techno-savvy will be capable of wielding the next generation of weapons of mass destruction.

On the other hand, there are intelligent people passionately pursuing methods of preventing the use of weapons, combating their effects and securing a future in which these problems mentioned above will be solved, and also working towards an advanced civilization.

It’s a race against time.

In the balance hangs nothing less than the future of civilization.

The danger from technology is secondary.

As of now, regardless of theories of international affairs, in one way or another, we inject power into our currency of negotiation, whether it be interpersonal or international, for after all, power is privilege, hard to give up, especially after getting a taste of it, and so we’ll quarrel over power, perhaps fight. Why deny it? The historical record is there for all to see. As for our inner terrors, our tendency to present false egoistic images to the world and of projecting our secret socially unacceptable fantasies on to others, we might just bring to pass what we fear and deny. It’s possible.

Meantime there are certain simple ideas that remain timeless: For example, as infants we exist at the pleasure of parents, big hulks who pick us up and carry us around sometimes lovingly, sometimes resentfully, often ambivalently, and to be sure many of us come to regard Authority with ambivalence. As Authority regards the dependent. A basic premise is that we all want something in a relationship. So what do we as infants want from Authority? How about security in our exploration of life? How about love? If it’s there we don’t have to pay for it. There are no conditions attached. Life, however, is both complicated and complex beyond a few words, and so we negotiate in the ‘best’ way we have at our disposal, which in the early stages of life are non-verbal intuitive methods that in part enter this life with us, genetically determined, epigenetically determined and in part is learned, but once adopted, a certain core approach becomes habitual, buried deeply under layers of later learned social skills, skills that we employ in our adult lives. These skills are however relatively on the surface. Hidden deep inside are secret desires, unfulfilled fantasies, hidden impulses that wouldn’t make sense in adult relationships if expressed openly in words.

It has been said repeatedly that crisis reveals character. Most of the time we get by in crisis, but we each have a ‘breaking point,’ meaning that under severe enduring stress we regress at a certain point, at which time we’ll abandon sophisticated social skills and a part of us will slip into infantile mode, not necessarily visible on the outside. It varies. No one can claim immunity. And acting out of infantile perception in adult situations can have unexpected consequences depending on the early life drama. Which makes life interesting. It also guarantees an interesting future.

Meantime scientists clarify the biology of learning, of short term memory, of long term memory, of the brain working as a whole, of ‘free will’ as we imagine it, but regardless of future directions, at this time we need agency on the personal and social level so as to help stabilize civilization. By agency I mean responsibility for one’s actions. Accountability, including in the face of dilemmas. Throughout the course of our lives from beginning to end we encounter dilemmas.

Consider the dilemmas the Europeans under German occupation faced last century. I use the European situation as an illustration or social paradigm, not to suggest that this situation will recur, nor to suggest that any one ethnic group will be targeted in the future, but I do suggest that if a global crisis hits, we’ll confront moral dilemmas, and so we can learn from those relatively few Europeans who resolved their dilemmas in noble ways, as opposed to the majority who did nothing to help the oppressed.

If a European in German occupied territory helped a Jew he or she and family would be in danger of arrest, torture and death. How about watching one’s spouse and children being tortured? On the other hand, if she or he did not help they would be participating in murder and genocide, and know it. Despite the danger, certain people from several European countries helped the Jews. According to those who interviewed and wrote about the helpers, (see references listed below) the helpers represented a cross section of the community, that is, some were uneducated laborers, some were serving women, some were formally educated, some were professionals, some professed religious convictions, some did not. Well then, what if anything did these noble risk takers have in common? What they shared in common was this: They saw themselves as responsible moral agents, and, acting on an internal locus of moral responsibility, they each acted on their knowledge and compassion and did the ‘right thing.’ It came naturally to them. But doing the ‘right thing’ in the face of life threatening dilemma does not come naturally to everyone. Fortunately it is a behavior that can be learned.

Concomitant with authentic learning, according to research biologists, is the production of brain chemicals that in turn cultivate structural modification in brain cells. A self reinforcing feedback system. In short, learning is part of a dynamic multi-dimensional interaction of input, output, behavioral change, chemicals, structural brain changes and complex adaptation in systems throughout the body. None of which diminishes the idea that we each enter this life with certain desires, potential and perhaps roles to act out, one of which for me is to improve myself.

Good news! I not only am, I become.

Finally, I list some 20th century resources that remain timeless to this day:

Millgram, S. Obedience to Authority: An Experimental View. Harper & Row. 1974.

Oliner, Samuel P. & Pearl. The Altruistic Personality: Rescuers of Jews in Nazi Europe. Free Press, Division of Macmillan. 1998

Fogelman, Eva. Conscience & Courage Anchor Books, Division of Random House. 1994

Block, Gay & Drucker, Malka. Rescuers: Portraits of Moral Courage in the Holocaust. Holms & Meier Publishers, 1992

]]>